452 research outputs found

    Sympathovagal balance and 1-h postload plasma glucose in normoglucose tolerant hypertensive patients.

    Get PDF
    AIMS: Normoglucose tolerant (NGT) subjects with a 1-h postload plasma glucose (PLPG) value ≥155 mg/dL have an increased risk of type-2 diabetes and subclinical organ damage. Heart rate variability (HRV) reflects cardiac autonomic balance, frequently impaired in course of diabetes. At this time, no data support the association between 1-h PLPG and HRV; thus, we investigated the possible association between 1-h PLPG and HRV. METHODS: We enrolled 92 never-treated hypertensive subjects (56 women, 36 men), aged 55 ± 9.8 years. During OGTT, the patients underwent electrocardiographic recordings to evaluate HRV in the time domain (SDNN). Insulin sensitivity was assessed by Matsuda index. RESULTS: Among participants, 56 were NGT, 20 had impaired glucose tolerance (IGT), and 16 had type-2 diabetes. According to the 1-h PLPG cutoff point of 155 mg/dL, we divided NGT subjects into: NGT < 155 (n = 38) and NGT ≥ 155 (n = 18). Glucose tolerance status was associated with a significant (P < 0.0001) increase in PLPG and insulin and the reduction in Matsuda index. In all groups, the SDNN values significantly (P < 0.0001) decreased during the first hour of OGTT. A complete recovery in NGT groups was observed at the end of the second hour; in IGT and type-2 diabetes, SDNN remained significantly lower with respect to baseline values. At multiple regression analysis, Matsuda index resulted in the only determinant of SDNN modification, explaining the 12.3 % of its variability. CONCLUSIONS: Our data demonstrate that during OGTT, sympathovagal balance is acutely affected by both glucose and insulin modifications. Particularly, NGT ≥ 155 subjects behave in the same way of IGT and type-2 diabetes patients

    Effects of Voluntary Resistance Exercise Training During Recovery From Hindlimb Unloading on Rat Gastrocnemius Muscle

    Get PDF
    As research continues to examine the deleterious impact of long-duration spaceflight on human muscle mass and function, there remain gaps in our knowledge of muscle physiology, especially in examining how muscle’s ability to recover or rehabilitate from unloading may alter the results of multiple exposures to microgravity followed by 1g recovery. The purpose of this study was to analyze the effects of resistance exercise training of gastrocnemius muscle mass and anabolism during the initial recovery period immediately following a bout of unloading, as well as to examine the role that exercise may have on a subsequent period of weightlessness. This was achieved in rodent models of simulated spaceflight (0g), recovery (1g), and resistance training (\u3e1g) using male Sprague-Dawley (6 mo) rats randomly assigned to the following groups: 28d hindlimb unloading (HU), 28d HU followed by a 56d recovery period of normal cage ambulation at 1g (1HU+REC), 2 cycles of 28d HU with a 56d recovery period between unloading (2HU), 2HU followed by an additional 56d recovery at 1g (2HU+REC), or an age- and housing-matched control group (CON). In addition, following the initial 28d HU period, two groups of animals were given 7d recovery at 1g followed by a 7wk (3 sessions/wk) moderate-intensity, moderate-volume voluntary resistance exercise program (EX) in which the animals were trained to perform a squat-like motion with full extension of the lower limb and resistance was applied incrementally by weighted pouches over the scapula to ~65% bodyweight. At the conclusion of the experiments, gastrocnemius muscles were carefully excised, weighed, and evaluated for cumulative (24h) rates of protein synthesis (FSR). Values of both muscle mass and FSR were lower than control during periods of unloading (p\u3c0.05), but with recovery, control values were reached for mass and surpassed for FSR. Interestingly, there was no significant difference between the mass of 2HU and 2HU+EX (p\u3e0.05), and both were diminished in comparison to control animals, suggesting that benefits of exercise during periods of ambulatory reloading after disuse/microgravity may not be additive. In conclusion, our data suggest that given adequate recovery, microgravity-induced losses of muscle mass can be fully restored to control values, and this adaptational response persists even with multiple exposures. These findings may have important implications not only for career astronauts, but also for individuals who have been subjected to casting of a limb or a period of bed rest following severe injury or illness

    Risk factors for metabolic syndrome independently predict arterial stiffness and endothelial dysfunction in patients with chronic kidney disease and minimal comorbidity

    Get PDF
    OBJECTIVE: Metabolic syndrome (MS) is common in patients with chronic kidney disease (CKD), but its contribution to arterial stiffness and endothelial dysfunction in CKD is not well defined. We hypothesized that risk factors for MS would independently predict arterial stiffness and endothelial dysfunction in CKD patients. RESEARCH DESIGN AND METHODS: Risk factors for MS, carotid-femoral pulse wave velocity (CF-PWV) and flow-mediated dilation (FMD) as measures of arterial stiffness and endothelial dysfunction, respectively, were assessed in 113 minimally comorbid CKD patients and in 23 matched control subjects. RESULTS: CF-PWV correlated with systolic blood pressure (SBP), waist circumference, and plasma glucose (r(2) = 0.25, 0.09, and 0.09; P < 0.01 for all). FMD correlated with SBP (r(2) = 0.09; P < 0.01) and waist circumference (r(2) = 0.03; P < 0.05). CF-PWV increased progressively (r(2) = 0.07; P < 0.01) with increasing number of risk factors for MS. In multiple linear regression, SBP and waist circumference were independent determinants of CF-PWV, whereas only SBP predicted FMD. CONCLUSIONS: The number of MS risk factors is an important determinant of arterial stiffness in CKD patients irrespective of the degree of renal impairment. Although BP remains the major determinant of arterial stiffness and endothelial dysfunction, waist circumference independently predicts arterial stiffness. MS risk factors, particularly abdominal girth, are potential targets for future interventional studies in patients with CKD

    Observation of a New Charmed Strange Meson

    Get PDF
    Using the CLEO-II detector, we have obtained evidence for a new meson decaying to D0K+D^0 K^+. Its mass is 2573.21.6+1.7±0.8±0.52573.2^{+1.7}_{-1.6}\pm 0.8\pm 0.5 {}~MeV/c2c^2 and its width is 164+5±316^{+5}_{-4}\pm 3~MeV/c2c^2. Although we do not establish its spin and parity, the new meson is consistent with predictions for an L=1L=1, S=1S=1, JP=2+J_P=2^+ charmed strange state.Comment: 9 pages uuencoded compressed postscript (process with uudecode then gunzip). hardcopies with figures can be obtained by sending mail to: [email protected]

    Opposite Associations of Trunk and Leg Fat Depots with Plasma Ferritin Levels in Middle-Aged and Older Chinese Men and Women

    Get PDF
    Background: Few data have been published on the associations of ferritin with trunk and leg fat depots. We aimed to investigate these associations in a Chinese population. Methodology: Trunk fat mass and leg fat mass were determined in a cross-sectional sample of 1,150 Chinese (479 men and 671 women) aged 50–70 years by dual-energy X-ray absorptiometry scan. Fasting plasma ferritin was measured. Principal Findings: Plasma ferritin was positively correlated with waist circumference, waist-to-hip ratio, total body fat and trunk fat mass, but inversely correlated with leg fat mass in men (r = 0.16, 0.26, 0.19, 0.22 and 20.12, respectively, all P,0.05) and women (r = 0.16, 0.16, 0.08, 0.17 and 20.12, respectively, all P,0.05). Multivariate regression analysis showed that ferritin levels increased with larger trunk fat mass (b = 0.33 6 0.08 for men and b = 0.21 6 0.05 for women, both P,0.001) while decreased with larger leg fat mass (b = 20.12 6 0.09, P = 0.15 for men; and b = 20.14 6 0.05, P = 0.005 for women). Moreover, plasma ferritin levels decreased with increasing tertile of leg fat mass among each tertile of trunk fat mass. Conclusion: This is the first study to report the opposite associations of trunk and leg fat depots with plasma ferritin levels

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Relationship between low Ankle-Brachial Index and rapid renal function decline in patients with atrial fibrillation: A prospective multicentre cohort study

    Get PDF
    OBJECTIVE: To investigate the relationship between Ankle-Brachial Index (ABI) and renal function progression in patients with atrial fibrillation (AF). DESIGN: Observational prospective multicentre cohort study. SETTING:Atherothrombosis Center of I Clinica Medica of 'Sapienza' University of Rome; Department of Medical and Surgical Sciences of University Magna Græcia of Catanzaro; Atrial Fibrillation Registry for Ankle-Brachial Index Prevalence Assessment-Collaborative Italian Study. PARTICIPANTS: 897 AF patients on treatment with vitamin K antagonists. MAIN OUTCOME MEASURES: The relationship between basal ABI and renal function progression, assessed by the estimated Glomerular Filtration Rate (eGFR) calculated with the CKD-EPI formula at baseline and after 2 years of follow-up. The rapid decline in eGFR, defined as a decline in eGFR >5 mL/min/1.73 m(2)/year, and incident eGFR<60 mL/min/1.73 m(2) were primary and secondary end points, respectively. RESULTS: Mean age was 71.8±9.0 years and 41.8% were women. Low ABI (ie, ≤0.90) was present in 194 (21.6%) patients. Baseline median eGFR was 72.7 mL/min/1.73 m(2), and 28.7% patients had an eGFR60 mL/min/1.73 m(2), 153 (23.9%) had a reduction of the eGFR <60 mL/min/1.73 m(2). ABI ≤0.90 was also an independent predictor for incident eGFR<60 mL/min/1.73 m(2) (HR 1.851, 95% CI 1.205 to 2.845, p=0.005). CONCLUSIONS: In patients with AF, an ABI ≤0.90 is independently associated with a rapid decline in renal function and incident eGFR<60 mL/min/1.73 m(2). ABI measurement may help identify patients with AF at risk of renal function deterioration

    Observation of inclusive B decays to the charmed baryons c++ and c0

    Get PDF
    complete author list: Procario M.; Balest R.; Cho K.; Daoudi M.; Ford W.; Johnson D.; Lingel K.; Lohner M.; Rankin P.; Smith J.; Alexander J.; Bebek C.; Berkelman K.; Bloom K.; Browder T.; Cassel D.; Cho H.; Coffman D.; Drell P.; Ehrlich R.; Galik R.; Garcia-Sciveres M.; Geiser B.; Gittelman B.; Gray S.; Hartill D.; Heltsley B.; Jones C.; Jones S.; Kandaswamy J.; Katayama N.; Kim P.; Kreinick D.; Ludwig G.; Masui J.; Mevissen J.; Mistry N.; Ng C.; Nordberg E.; Patterson J.; Peterson D.; Riley D.; Salman S.; Sapper M.; Würthwein F.; Avery P.; Freyberger A.; Rodriguez J.; Stephens R.; Yang S.; Yelton J.; Cinabro D.; Henderson S.; Liu T.; Saulnier M.; Wilson R.; Yamamoto H.; Bergfeld T.; Eisenstein B.; Gollin G.; Ong B.; Palmer M.; Selen M.; Thaler J.; Sadoff A.; Ammar R.; Ball S.; Baringer P.; Bean A.; Besson D.; Coppage D.; Copty N.; Davis R.; Hancock N.; Kelly M.; Kwak N.; Lam H.; Kubota Y.; Lattery M.; Nelson J.; Patton S.; Perticone D.; Poling R.; Savinov V.; Schrenk S.; Wang R.; Alam M.; Kim I.; Nemati B.; O'Neill J.; Severini H.; Sun C.; Zoeller M.; Crawford G.; Daubenmier C.; Fulton R.; Fujino D.; Gan K.; Honscheid K.; Kagan H.; Kass R.; Lee J.; Malchow R.; Morrow F.; Skovpen Y.; Sung M.; White C.; Butler F.; Fu X.; Kalbfleisch G.; Ross W.; Skubic P.; Snow J.; Wang P.; Wood M.; Brown D.; Fast J.; McIlwain R.; Miao T.; Miller D.; Modesitt M.; Payne D.; Shibata E.; Shipsey I.; Wang P.; Battle M.; Ernst J.; Kwon Y.; Roberts S.; Thorndike E.; Wang C.; Dominick J.; Lambrecht M.; Sanghera S.; Shelkov V.; Skwarnicki T.; Stroynowski R.; Volobouev I.; Wei G.; Zadorozhny P.; Artuso M.; Goldberg M.; He D.; Horwitz N.; Kennett R.; Mountain R.; Moneti G.; Muheim F.; Mukhin Y.; Playfer S.; Rozen Y.; Stone S.; Thulasidas M.; Vasseur G.; Zhu G.; Bartelt J.; Csorna S.; Egyed Z.; Jain V.; Kinoshita K.; Edwards K.; Ogg M.; Britton D.; Hyatt E.; MacFarlane D.; Patel P.; Akerib D.; Barish B.; Chadha M.; Chan S.; Cowen D.; Eigen G.; Miller J.; O'Grady C.; Urheim J.; Weinstein A.; Acosta D.; Athanas M.; Masek G.; Paar H.; Gronberg J.; Kutschke R.; Menary S.; Morrison R.; Nakanishi S.; Nelson H.; Nelson T.; Qiao C.; Richman J.; Ryd A.; Tajima H.; Schmidt D.; Sperka D.; Witherell M.; Schmidt D.; Sperka D.; Witherell M.; Qiao C.; Richman J.; Ryd A.; Tajima H.; Morrison R.; Nakanishi S.; Nelson H.; Nelson T.; Procario M.</p
    corecore