947 research outputs found

    Anderson v. State: The Consent to Search Doctrine Revisited

    Get PDF

    A multiple scales approach to crack front waves

    Full text link
    Perturbation of a propagating crack with a straight edge is solved using the method of matched asymptotic expansions (MAE). This provides a simplified analysis in which the inner and outer solutions are governed by distinct mechanics. The inner solution contains the explicit perturbation and is governed by a quasi-static equation. The outer solution determines the radiation of energy away from the tip, and requires solving dynamic equations in the unperturbed configuration. The outer and inner expansions are matched via the small parameter L/l defined by the disparate length scales: the crack perturbation length L and the outer length scale l associated with the loading. The method is first illustrated for a scalar crack model and then applied to the elastodynamic mode I problem. The dispersion relation for crack front waves is found by requiring that the energy release rate is unaltered under perturbation. The wave speed is calculated as a function of the nondimensional parameter kl where k is the crack front wavenumber, and dispersive properties of the crack front wave speed are described for the first time. The example problems considered here demonstrate that the potential of using MAE for moving boundary value problems with multiple scales.Comment: 25 pages, 5 figure

    Abundances of Baade's Window Giants from Keck/HIRES Spectra: I. Stellar Parameters and [Fe/H] Values

    Full text link
    We present the first results of a new abundance survey of the Milky Way bulge based on Keck/HIRES spectra of 27 K-giants in the Baade's Window (l=1l = 1, b=4b = -4) field. The spectral data used in this study are of much higher resolution and signal-to-noise than previous optical studies of Galactic bulge stars. The [Fe/H] values of our stars, which range between -1.29 and +0.51+0.51, were used to recalibrate large low resolution surveys of bulge stars. Our best value for the mean [Fe/H] of the bulge is 0.10±0.04-0.10 \pm 0.04. This mean value is similar to the mean metallicity of the local disk and indicates that there cannot be a strong metallicity gradient inside the solar circle. The metallicity distribution of stars confirms that the bulge does not suffer from the so-called ``G-dwarf'' problem. This paper also details the new abundance techniques necessary to analyze very metal-rich K-giants, including a new Fe line list and regions of low blanketing for continuum identification.Comment: Accepted for publication in January 2006 Astrophysical Journal. Long tables 3--6 withheld to save space (electronic tables in journal paper). 53 pages, 10 figures, 9 table

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation

    Get PDF
    The LAGLIDADG homing endonuclease (LHE) I-AniI has adopted an extremely efficient secondary RNA splicing activity that is beneficial to its host, balanced against inefficient DNA cleavage. A selection experiment identified point mutations in the enzyme that act synergistically to improve endonuclease activity. The amino-acid substitutions increase target affinity, alter the thermal cleavage profile and significantly increase targeted recombination in transfected cells. The RNA splicing activity is not affected by these mutations. The improvement in DNA cleavage activity is largely focused on one of the enzyme's two active sites, corresponding to a rearrangement of a lysine residue hypothesized to act as a general base. Most of the constructs isolated in the screen contain one or more mutations that revert an amino-acid identity to a residue found in one or more close homologues of I-AniI. This implies that mutations that have previously reduced the endonuclease activity of I-AniI are identified and reversed, sometimes in combination with additional ‘artificial’ mutations, to optimize its in vivo activity

    Achieving temperature-size changes in a unicellular organism.

    Get PDF
    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis

    Dynamic Changes in Brain Functional Connectivity during Concurrent Dual-Task Performance

    Get PDF
    This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18–24 Hz) and one in the gamma-band (30–40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices

    A randomised controlled trial of a community-based healthy lifestyle program for overweight and obese adolescents: the Loozit® study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need to develop sustainable and clinically effective weight management interventions that are suitable for delivery in community settings where the vast majority of overweight and obese adolescents should be treated. This study aims to evaluate the effect of additional therapeutic contact as an adjunct to the Loozit<sup>® </sup>group program – a community-based, lifestyle intervention for overweight and lower grade obesity in adolescents. The additional therapeutic contact is provided via telephone coaching and either mobile phone Short Message Service or electronic mail, or both.</p> <p>Methods and design</p> <p>The study design is a two-arm randomised controlled trial that aims to recruit 168 overweight and obese 13–16 year olds (Body Mass Index z-score 1.0 to 2.5) in Sydney, Australia. Adolescents with secondary causes of obesity or significant medical illness are excluded. Participants are recruited via schools, media coverage, health professionals and several community organisations. Study arm one receives the Loozit<sup>® </sup>group weight management program (G). Study arm two receives the same Loozit<sup>® </sup>group weight management program plus additional therapeutic contact (G+ATC). The 'G' intervention consists of two phases. Phase 1 involves seven weekly group sessions held separately for adolescents and their parents. This is followed by phase 2 that involves a further seven group sessions held regularly, for adolescents only, until two years follow-up. Additional therapeutic contact is provided to adolescents in the 'G+ATC' study arm approximately once per fortnight during phase 2 only. Outcome measurements are assessed at 2, 12 and 24 months post-baseline and include: BMI z-score, waist z-score, metabolic profile indicators, physical activity, sedentary behaviour, eating patterns, and psychosocial well-being.</p> <p>Discussion</p> <p>The Loozit<sup>® </sup>study is the first randomised controlled trial of a community-based adolescent weight management intervention to incorporate additional therapeutic contact via a combination of telephone coaching, mobile phone Short Message Service, and electronic mail. If shown to be successful, the Loozit<sup>® </sup>group weight management program with additional therapeutic contact has the potential to be readily translatable to a range of health care settings.</p> <p>Trial registration</p> <p>The protocol for this study is registered with the Australian Clinical Trials Registry (ACTRNO12606000175572).</p
    corecore