1,237 research outputs found
Non-invasive Evaluation of Aortic Stiffness Dependence with Aortic Blood Pressure and Internal Radius by Shear Wave Elastography and Ultrafast Imaging
Elastic properties of arteries have long been recognized as playing a major
role in the cardiovascular system. However, non-invasive in vivo assessment of
local arterial stiffness remains challenging and imprecise as current
techniques rely on indirect estimates such as wall deformation or pulse wave
velocity. Recently, Shear Wave Elastography (SWE) has been proposed to
non-invasively assess the intrinsic arterial stiffness. In this study, we
applied SWE in the abdominal aortas of rats while increasing blood pressure
(BP) to investigate the dependence of shear wave speed with invasive arterial
pressure and non-invasive arterial diameter measurements. A 15MHz linear array
connected to an ultrafast ultrasonic scanner, set non-invasively, on the
abdominal aorta of anesthetized rats (N=5) was used. The SWE acquisition
followed by an ultrafast (UF) acquisition was repeated at different moment of
the cardiac cycle to assess shear wave speed and arterial diameter variations
respectively. Invasive arterial BP catheter placed in the carotid, allowed the
accurate measurement of pressure responses to increasing does of phenylephrine
infused via a venous catheter. The SWE acquisition coupled to the UF
acquisition was repeated for different range of pressure. For normal range of
BP, the shear wave speed was found to follow the aortic BP variation during a
cardiac cycle. A minimum of (5.060.82) m/s during diastole and a maximum
of (5.970.90) m/s during systole was measured. After injection of
phenylephrine, a strong increase of shear wave speed (13.855.51) m/s was
observed for a peak systolic arterial pressure of (19010) mmHg. A
non-linear relationship between shear wave speed and arterial BP was found. A
complete non-invasive method was proposed to characterize the artery with shear
wave speed combined with arterial diameter variations. Finally, the results
were validated against two parameters the incremental elastic modulus and the
pressure elastic modulus derived from BP and arterial diameter variations
Superdiffusive heat conduction in semiconductor alloys -- II. Truncated L\'evy formalism for experimental analysis
Nearly all experimental observations of quasi-ballistic heat flow are
interpreted using Fourier theory with modified thermal conductivity. Detailed
Boltzmann transport equation (BTE) analysis, however, reveals that the
quasi-ballistic motion of thermal energy in semiconductor alloys is no longer
Brownian but instead exhibits L\'evy dynamics with fractal dimension . Here, we present a framework that enables full 3D experimental analysis by
retaining all essential physics of the quasi-ballistic BTE dynamics
phenomenologically. A stochastic process with just two fitting parameters
describes the transition from pure L\'evy superdiffusion as short length and
time scales to regular Fourier diffusion. The model provides accurate fits to
time domain thermoreflectance raw experimental data over the full modulation
frequency range without requiring any `effective' thermal parameters and
without any a priori knowledge of microscopic phonon scattering mechanisms.
Identified values for InGaAs and SiGe match ab initio BTE predictions
within a few percent. Our results provide experimental evidence of fractal
L\'evy heat conduction in semiconductor alloys. The formalism additionally
indicates that the transient temperature inside the material differs
significantly from Fourier theory and can lead to improved thermal
characterization of nanoscale devices and material interfaces
Bacterial pore-forming toxins: The (w)hole story?
Abstract.: Pore-forming toxins (PFTs) are the most common class of bacterial protein toxins and constitute important bacterial virulence factors. The mode of action of PFT is starting to be better understood. In contrast, little is known about the cellular response to this threat. Recent studies reveal that cells do not just swell and lyse, but are able to sense and react to pore formation, mount a defense, even repair the damaged membrane and thus survive. These responses involve a variety of signal-transduction pathways and sophisticated cellular mechanisms such as the pathway regulating lipid metabolism. In this review we discuss the different classes of bacterial PFTs and their modes of action, and provide examples of how the different bacteria use PFTs. Finally, we address the more recent field dealing with the eukaryotic cell response to PFT-induced damag
Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges
We survey the current situation regarding chemical modelling of the synthesis
of molecules in the interstellar medium. The present state of knowledge
concerning the rate coefficients and their uncertainties for the major
gas-phase processes -- ion-neutral reactions, neutral-neutral reactions,
radiative association, and dissociative recombination -- is reviewed. Emphasis
is placed on those reactions that have been identified, by sensitivity
analyses, as 'crucial' in determining the predicted abundances of the species
observed in the interstellar medium. These sensitivity analyses have been
carried out for gas-phase models of three representative, molecule-rich,
astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the
expanding circumstellar envelope IRC +10216. Our review has led to the proposal
of new values and uncertainties for the rate coefficients of many of the key
reactions. The impact of these new data on the predicted abundances in TMC-1
and L134N is reported. Interstellar dust particles also influence the observed
abundances of molecules in the interstellar medium. Their role is included in
gas-grain, as distinct from gas-phase only, models. We review the methods for
incorporating both accretion onto, and reactions on, the surfaces of grains in
such models, as well as describing some recent experimental efforts to simulate
and examine relevant processes in the laboratory. These efforts include
experiments on the surface-catalysed recombination of hydrogen atoms, on
chemical processing on and in the ices that are known to exist on the surface
of interstellar grains, and on desorption processes, which may enable species
formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review
A finite element model to study the effect of tissue anisotropy onex vivoarterial shear wave elastography measurements
A
A 380 GHz SIS receiver using Nb/AlO(x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS
The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range
Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5), the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and-40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r2=0.91± 0.02, p<0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and-26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure. © 2012 IEEE.published_or_final_versio
Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation
We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ???10-??m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.open0
Absorbing boundary conditions for the Westervelt equation
The focus of this work is on the construction of a family of nonlinear
absorbing boundary conditions for the Westervelt equation in one and two space
dimensions. The principal ingredient used in the design of such conditions is
pseudo-differential calculus. This approach enables to develop high order
boundary conditions in a consistent way which are typically more accurate than
their low order analogs. Under the hypothesis of small initial data, we
establish local well-posedness for the Westervelt equation with the absorbing
boundary conditions. The performed numerical experiments illustrate the
efficiency of the proposed boundary conditions for different regimes of wave
propagation
- …
