42 research outputs found

    HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13

    Get PDF
    Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both

    CRY2 Is Associated with Rapid Cycling in Bipolar Disorder Patients

    Get PDF
    Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.Four CRY2 SNPs spanning from intron 2 to downstream 3'UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006-0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3-1.4, P = 0.03-0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder

    HLA-B*27 is significantly enriched in Nordic patients with psoriatic arthritis mutilans.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowObjectives: The genetic contribution to psoriatic disease is substantial with a dominating influence of the HLA region. The profile of HLA class I genotypes likely contributes to shaping clinical phenotypes. Herein we aimed to explore such genotypes in cohorts of closely characterised subsets of psoriatic disease with special focus on psoriatic arthritis mutilans (PAM), a severe and rare form of psoriatic arthritis (PsA). Methods: Cohorts of patients with the diagnosis of psoriasis vulgaris with or without arthritis (n=1217), psoriasis without arthritis (n=534), psoriatic arthritis without mutilating disease (n=337) and psoriatic arthritis mutilans (n=63) were collected and genotyped for HLA class I and II genes, with standardised methodologies. Cases were compared with a healthy control population (n=2468). Case-only and case-control association tests were performed to address the hypothesis of genetic contribution to clinical phenotypes. Results: The presence of HLA-B*27 was strikingly increased in PAM (45%) compared with PsA without mutilating disease (13%) and with healthy controls (13%). However, within the PAM population, HLA-B*27 did not correlate with clinical markers such as number of mutilating joints, radiographic scoring, disease duration and age of disease onset. Conclusions: HLA-B*27 emerges as an important genotype marker for PAM.UK Research & Innovation (UKRI) Medical Research Council UK (MRC) European Commission Swedish Psoriasis Association Finsen Foundation Karolinska Institutet Nordic Psoriasis Patient Society (NORDPSO

    Accelerating translational research by clinically driven development of an informatics platform--a case study.

    No full text
    Translational medicine is becoming increasingly dependent upon data generated from health care, clinical research, and molecular investigations. This increasing rate of production and diversity in data has brought about several challenges, including the need to integrate fragmented databases, enable secondary use of patient clinical data from health care in clinical research, and to create information systems that clinicians and biomedical researchers can readily use. Our case study effectively integrates requirements from the clinical and biomedical researcher perspectives in a translational medicine setting. Our three principal achievements are (a) a design of a user-friendly web-based system for management and integration of clinical and molecular databases, while adhering to proper de-identification and security measures; (b) providing a real-world test of the system functionalities using clinical cohorts; and (c) system integration with a clinical decision support system to demonstrate system interoperability. We engaged two active clinical cohorts, 747 psoriasis patients and 2001 rheumatoid arthritis patients, to demonstrate efficient query possibilities across the data sources, enable cohort stratification, extract variation in antibody patterns, study biomarker predictors of treatment response in RA patients, and to explore metabolic profiles of psoriasis patients. Finally, we demonstrated system interoperability by enabling integration with an established clinical decision support system in health care. To assure the usefulness and usability of the system, we followed two approaches. First, we created a graphical user interface supporting all user interactions. Secondly we carried out a system performance evaluation study where we measured the average response time in seconds for active users, http errors, and kilobits per second received and sent. The maximum response time was found to be 0.12 seconds; no server or client errors of any kind were detected. In conclusion, the system can readily be used by clinicians and biomedical researchers in a translational medicine setting

    P2RX7: expression responds to sleep deprivation and associates with rapid cycling in bipolar disorder type 1.

    Get PDF
    Rapid cycling is a severe form of bipolar disorder with an increased rate of episodes that is particularly treatment-responsive to chronotherapy and stable sleep-wake cycles. We hypothesized that the P2RX7 gene would be affected by sleep deprivation and be implicated in rapid cycling.To assess whether P2RX7 expression is affected by total sleep deprivation and if variation in P2RX7 is associated with rapid cycling in bipolar patients.Gene expression analysis in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and case-case and case-control SNP/haplotype association analyses in patients.Healthy volunteers at the sleep research center, University of California, Irvine Medical Center (UCIMC), USA (n = 8) and Swedish outpatients recruited from specialized psychiatric clinics for bipolar disorder, diagnosed with bipolar disorder type 1 (n = 569; rapid cycling: n = 121) and anonymous blood donor controls (n = 1,044).P2RX7 RNA levels were significantly increased during sleep deprivation in PBMCs from healthy volunteers (p = 2.3*10(-9)). The P2RX7 rs2230912 _A allele was more common (OR = 2.2, p = 0.002) and the ACGTTT haplotype in P2RX7 (rs1718119 to rs1621388) containing the protective rs2230912_G allele (OR = 0.45-0.49, p = 0.003-0.005) was less common, among rapid cycling cases compared to non-rapid cycling bipolar patients and blood donor controls.Sleep deprivation increased P2RX7 expression in healthy persons and the putatively low-activity P2RX7 rs2230912 allele A variant was associated with rapid cycling in bipolar disorder. This supports earlier findings of P2RX7 associations to affective disorder and is in agreement with that particularly rapid cycling patients have a more vulnerable diurnal system
    corecore