12 research outputs found

    Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth.

    Get PDF
    Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts

    The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex

    Get PDF
    Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane

    Cryo-FIB-SEM as a promising tool for localizing proteins in 3D

    No full text
    Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) is an invaluable tool to visualize the 3D architecture of cell constituents and map cell networks. Recently, amorphous ice embedding techniques have been associated with FIB-SEM to ensure that the biological material remains as close as possible to its native state. Here we have vitrified human HeLa cells and directly imaged them by cryo-FIB-SEM with the secondary electron InLens detector at cryogenic temperature and without any staining. Image stacks were aligned and processed by denoising, removal of ion beam milling artefacts and local charge imbalance. Images were assembled into a 3D volume and the major cell constituents were modelled. The data illustrate the power of the workflow to provide a detailed view of the internal architecture of the fully hydrated, close-to-native, entire HeLa cell. In addition, we have studied the feasibility of combining cryo-FIB-SEM imaging with live-cell protein detection. We demonstrate that internalized gold particles can be visualized by detecting back scattered primary electrons at low kV while simultaneously acquiring signals from the secondary electron detector to image major cell features. Furthermore, gold-conjugated antibodies directed against RNA polymerase II could be observed in the endo-lysosomal pathway while labelling of the enzyme in the nucleus was not detected, a shortcoming likely due to the inadequacy between the size of the gold particles and the voxel size. With further refinements, this method promises to have a variety of applications where the goal is to localize cellular antigens while visualizing the entire native cell in three dimensions

    Altered parabrachial nucleus nociceptive processing may underlie central pain in Parkinson’s disease.

    No full text
    The presence of central neuropathic pain in Parkinson’s disease suggests that the brain circuits that allow us to process pain could be dysfunctional in the disorder. However, there is to date no clear pathophysiological mechanism to explain these symptoms. In this work, we present evidence that the dysfunction of the subthalamic nucleus and/or substantia nigra pars reticulata may impact nociceptive processing in the parabrachial nucleus (PBN), a low level primary nociceptive structure in the brainstem, and induce a cellular and molecular neuro-adaptation in this structure. In rat models of Parkinson’s disease with a partial dopaminergic lesion in the substantia nigra compacta, we found that the substantia nigra reticulata showed enhanced nociceptive responses. Such responses were less impacted in the subthalamic nucleus. A total dopaminergic lesion produced an increase in the nociceptive responses as well as an increase of the firing rate in both structures. In the PBN, inhibited nociceptive responses and increased expression of GABAA receptors were found following a total dopaminergic lesion. However, neuro-adaptations at the level of dendritic spine density and post-synaptic density were found in both dopaminergic lesion groups. These results suggest that the molecular changes within the PBN following a larger dopaminergic lesion, such as increased GABAA expression, is a key mechanism to produce nociceptive processing impairment, whilst other changes may protect function after smaller dopaminergic lesions. We also propose that these neuro-adaptations follow increased inhibitory tone from the substantia nigra pars reticulata and may represent the mechanism generating central neuropathic pain in Parkinson’s disease

    Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis

    No full text
    International audienceIn nanomedicine, treatments based on physical mechanisms are more and more investigated and are promising alternatives for challenging tumor therapy. One of these approaches, called magneto-mechanical treatment, consists in triggering cell death via the vibration of anisotropic magnetic particles, under a low frequency magnetic field. In this work, we introduce a new type of easily accessible magnetic microparticles (MMPs) and study the influence of their surface functionalization on their ability to induce such an effect, and its mechanism. We prepared anisotropic magnetite microparticles by liquid-phase ball milling of a magnetite powder. These particles are completely different from the often-used SPIONs: they are micron-size, ferromagnetic, with a closed-flux magnetic structure reminiscent of that of vortex particles. The magnetic particles were covered with a silica shell, and grafted with PEGylated ligands with various physicochemical properties. We investigated both bare and coated particles' in vitro cytotoxicity, and compared their efficiency to induce U87-MG human glioblastoma cell apoptosis under a low frequency rotating magnetic field (RMF). Our results indicated that (1) the magneto-mechanical treatment with bare MMPs induces a rapid decrease in cell viability whereas the effect is slower with PEGylated particles; (2) the number of apoptotic cells after magneto-mechanical treatment is higher with PEGylated particles; (3) a lower frequency of RMF (down to 2 Hz) favors the apoptosis. These results highlight a difference in the cell death mechanism according to the properties of particles used – the rapid cell death observed with the bare MMPs indicates a death pathway via necrosis, while PEGylated particles seem to favor apoptosis

    Role of Triadin in the Organization of Reticulum Membrane at the Muscle Triad.

    No full text
    The terminal cisternae represent one of the functional domains of the skeletal muscle sarcoplasmic reticulum (SR). They are closely apposed to plasma membrane invaginations, the T-tubules, with which they form structures called triads. In triads, the physical interaction between the T-tubule-anchored voltage-sensing channel DHPR and the SR calcium channel RyR1 is essential because it allows the depolarization-induced calcium release that triggers muscle contraction. This interaction between DHPR and RyR1 is based on the peculiar membrane structures of both T-tubules and SR terminal cisternae. However, little is known about the molecular mechanisms governing the formation of SR terminal cisternae. We have previously shown that ablation of triadins, a family of SR transmembrane proteins interacting with RyR1, induced skeletal muscle weakness in KO mice as well as a modification of the shape of triads. Here we explore the intrinsic molecular properties of the longest triadin isoform, Trisk 95. We show that when ectopically expressed, Trisk 95 is able to modulate reticulum membrane morphology. The membrane deformations induced by Trisk 95 are accompanied by modifications of the microtubule network organization. We show that multimerization of Trisk 95 via disulfide bridges, together with interaction with microtubules, are responsible for the ability of Trisk 95 to structure reticulum membrane. When domains responsible for these molecular properties are deleted, anchoring of Trisk 95 to the triads in muscle cells is strongly decreased, suggesting that oligomers of Trisk 95 and microtubules contribute to the organization of the SR terminal cisternae in a triad

    Photoactivation of gold nanoparticles for glioma treatment

    No full text
    International audienceRadiosensitization efficacy of gold nanoparticles (AuNPs) with low energy radiations (88keV) was evaluated in vitro and in vivo on rats bearing glioma. In vitro, a significant dose-enhancement factor was measured by clonogenic assays after irradiation with synchrotron radiation of F98 glioma cells in presence of AuNPs (1.9 and 15nm in diameter). In vivo, 1.9nm nanoparticles were found to be toxic following intracerebral delivery in rats bearing glioma, whether no toxicity was observed using 15nm nanoparticles at the same concentration (50mg/mL). The therapeutic efficacy of gold photoactivation was determined by irradiating the animals after intracerebral infusion of AuNPs. Survival of rats that had received the combination of treatments (AuNPs: 50mg/mL, 15Gy) was significantly increased in comparison with the survival of rats that had received irradiation alone. In conclusion, this experimental approach is promising and further studies are foreseen for improving its therapeutic efficacy

    Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice

    Get PDF
    International audienceMale infertility is a major health concern. Among its different causes, multiple morphological abnormalities of the flagella (MMAF) induces asthenozoospermia and is one of the most severe forms of qualitative sperm defects. Sperm of affected men display short, coiled, absent, and/or irregular flagella. To date, six genes (DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, and WDR66) have been found to be recurrently associated with MMAF, but more than half of the cases analyzed remain unresolved, suggesting that many yet-uncharacterized gene defects account for this phenotype. Here, whole-exome sequencing (WES) was performed on 168 infertile men who had a typical MMAF phenotype. Five unrelated affected individuals carried a homozygous deleterious mutation in ARMC2, a gene not previously linked to the MMAF phenotype. Using the CRISPR-Cas9 technique, we generated homozygous Armc2 mutant mice, which also presented an MMAF phenotype, thus confirming the involvement of ARMC2 in human MMAF. Immunostaining experiments in AMRC2-mutated individuals and mutant mice evidenced the absence of the axonemal central pair complex (CPC) proteins SPAG6 and SPEF2, whereas the other tested axonemal and peri-axonemal components were present, suggesting that ARMC2 is involved in CPC assembly and/or stability. Overall, we showed that bi-allelic mutations in ARMC2 cause male infertility in humans and mice by inducing a typical MMAF phenotype, indicating that this gene is necessary for sperm flagellum structure and assembly

    Shiga Toxin Facilitates Its Retrograde Transport by Modifying Microtubule Dynamics

    No full text
    The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway
    corecore