3,405 research outputs found

    Deep VLT infrared observations of X-ray Dim Isolated Neutron Stars

    Full text link
    X-ray observations have unveiled the existence of a family of radio-quiet Isolated Neutron Stars whose X-ray emission is purely thermal, hence dubbed X-ray Dim Isolated Neutron Stars (XDINSs). While optical observations have allowed to relate the thermal emission to the neutron star cooling and to build the neutron star surface thermal map, IR observations are critical to pinpoint a spectral turnover produced by a so far unseen magnetospheric component, or by the presence of a fallback disk. The detection of such a turnover can provide further evidence of a link between this class of isolated neutron stars and the magnetars, which show a distinctive spectral flattening in the IR. Here we present the deepest IR observations ever of five XDINSs, which we use to constrain a spectral turnover in the IR and the presence of a fallback disk. The data are obtained using the ISAAC instrument at the VLT. For none of our targets it was possible to identify the IR counterpart down to limiting magnitudes H = 21.5 - 22.9. Although these limits are the deepest ever obtained for neutron stars of this class, they are not deep enough to rule out the existence and the nature of a possible spectral flattening in the IR. We also derive, by using disk models, the upper limits on the mass inflow rate in a fallback disk. We find the existence of a putative fallback disk consistent (although not confirmed) with our observations.Comment: 6 pages, 2 figures, accepted by A&A on 26-06-200

    Pulsars With Jets May Harbor Dynamically Important Accretion Disks

    Full text link
    For many astrophysical sources with jets, there is evidence for the contemporaneous presence of disks. In contrast, pulsars such as the Crab and Vela show jets but have not yet revealed direct evidence for accretion disks. Here we show that for such pulsars, an accretion disk radiating below detectable thresholds may simultaneously account for (1) observed deviations in the braking indices from that of the simple dipole, (2) observed pulsar timing ages, and (3) possibly even the jet morphology via a disk outflow that interacts with the pulsar wind within, collimating and/or redirecting it.Comment: 10 pages, 2 figs., in press, ApJ. Let

    Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size

    Get PDF
    To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence

    CIV and CIII] reverberation mapping of the luminous quasar PG 1247+267

    Full text link
    So far the masses of about 50 active galactic nuclei have been measured through the reverberation mapping technique (RM). Most measurements have been performed for objects of moderate luminosity and redshift, based on Hβ\beta, which is also used to calibrate the scaling relation which allows single-epoch (SE) mass determination based on AGN luminosity and the width of different emission lines. The SE mass obtained from CIV(1549A˚)(1549 {\rm\AA}) line shows a large spread around mean values, due to complex structure and gas dynamics of the relevant emission region. Direct RM measures of CIV exist for only 6 AGNs of low luminosity and redshift, and only one luminous quasar (Kaspi et al 2007). We have collected since 2003 photometric and spectroscopic observations of PG1247+267, the most luminous quasar ever analyzed for RM. We provide light curves for the continuum and for CIV(1549A˚)(1549 {\rm\AA}) and CIII](1909A˚)(1909{\rm\AA}), and measures of the reverberation time lags based on the SPEAR method (Zu et al. 2011). The sizes of the line emission regions are in a ratio RCIII]/RCIV2R_{CIII]}/R_{CIV}\sim 2, similar to the case of Seyfert galaxies, indicating for the first time a similar ionization stratification in a luminous quasar and low luminosity nuclei. Due to relatively small broad line region size and relatively narrow line widths, we estimate a small mass and an anomalously high Eddington ratio. We discuss the possibility that either the shape of the emission region or an amplification of the luminosity caused by gravitational lensing may be in part responsible of the result.Comment: 10 pagese, 6 figures, 3 tables, Accepted for publication in Ap

    A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255: I. C IV absorption variability

    Get PDF
    Broad Absorption Lines indicate gas outflows with velocities from thousands km/s to about 0.2 the speed of light, which may be present in all quasars and may play a major role in the evolution of the host galaxy. The variability of absorption patterns can provide informations on changes of the density and velocity distributions of the absorbing gas and its ionization status. We collected 23 photometrical and spectro-photometrical observations at the 1.82m Telescope of the Asiago Observatory since 2003, plus other 5 spectra from the literature. We analysed the evolution in time of the equivalent width of the broad absorption feature and two narrow absorption systems, the correlation among them and with the R band magnitude. We performed a structure function analysis of the equivalent width variations. We present an unprecedented monitoring of a broad absorption line quasar based on 28 epochs in 14 years. The shape of broad absorption feature shows a relative stability, while its equivalent width slowly declines until it sharply increases during 2011. In the same time the R magnitude stays almost constant until it sharply increases during 2011. The equivalent width of the narrow absorption redwards of the systemic redshift only shows a decline. The broad absorption behaviour suggests changes of the ionisation status as the main cause of variability. We show for the first time a correlation of this variability with the R band flux. The different behaviour of the narrow absorption system might be due to recombination time delay. The structure function of the absorption variability has a slope comparable with typical optical variability of quasars. This is consistent with variations of the 200 A ionising flux originating in the inner part of the accretion disk.Comment: 10 pages, 8 figures, to appear on Astronomy & Astrophysic

    Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405

    Full text link
    We present an optical-to-X-ray spectral analysis of the afterglow of GRB 020405. The optical spectral energy distribution not corrected for the extragalactic extinction is significantly below the X-ray extrapolation of the single powerlaw spectral model suggested by multiwavelength studies. We investigate whether considerable extinction could explain the observed spectral ``mismatch'' by testing several types of extinction curves. For the first time we test extinction curves computed with time-dependent numerical simulations of dust grains destruction by the burst radiation. We find that an extinction law weakly depen dent on wavelength can reconcile the unabsorbed optical and X-ray data with the expected synchrotron spectrum. A gray extinction law can be provided by a dust grain size distribution biased toward large grains.Comment: 6 pages, 5 figures, accepted for publication on A&

    Geometric distortions in FMCW SAR images due to inaccurate knowledge of electronic radar parameters: analysis and correction by means of corner reflectors

    Get PDF
    Abstract In the last years the Frequency Modulated Continuous Wave (FMCW) technology has been playing an ever greater role in the realization of compact, light and cheap Synthetic Aperture Radar (SAR) systems to be mounted onboard small, low altitude platforms such as airplanes, helicopters and drones. To correctly focus FMCW SAR images, it is necessary to accurately know some system parameters, including the frequency sweep rate of the signal transmitted by the radar. It may happen, however, that this frequency sweep rate is not very accurately measured by the radar provider, and thus an incorrect value of this parameter is used during the SAR data focusing procedure. This may produce serious geometric distortion effects in the focused FMCW SAR images. To circumvent these problems, in this work we present a procedure that estimates the frequency sweep rate actually employed by the FMCW radar, thus providing a key information that can be then profitably used to achieve the correct focusing of the SAR data acquired by the radar system at hand. More specifically, we propose an algorithm that exploits on one side the focused SAR images corrupted by the geometric distortion effects induced by the inaccurate knowledge of this radar parameter, and on the other side the very precise in-situ measurements of the positions of a limited number of Corner Reflectors (CRs) properly deployed over the observed scene. The effectiveness of the proposed algorithm has been tested on real data acquired by an airborne X-band FMCW SAR system

    UVES/VLT high resolution absorption spectroscopy of the GRB080330 afterglow: a study of the GRB host galaxy and intervening absorbers

    Full text link
    We study the Gamma Ray Burst (GRB) environment and intervening absorbers by analyzing the optical absorption features produced by gas surrounding the GRB or along its line of sight. We analyzed high resolution spectroscopic observations (R=40000, S/N=3 - 6) of the optical afterglow of GRB080330, taken with UVES at the VLT ~ 1.5 hours after the GRB trigger. The spectrum illustrates the complexity of the ISM of the GRB host galaxy at z = 1.51 which has at least four components in the main absorption system. We detect strong FeII, SiII, and NiII excited absorption lines associated with the bluemost component only. In addition to the host galaxy, at least two more absorbers lying along the line of sight to the afterglow have been detected in the redshift range 0.8 < z < 1.1, each exhibiting MgII absorption. For the bluemost component in the host galaxy, we derive information about its distance from the site of the GRB explosion. We do so by assuming that the excited absorption lines are produced by indirect UV pumping, and compare the data with a time dependent photo-excitation code. The distance of this component is found to be 280+40-50 pc, which is lower than found for other GRBs (1 - 6 kpc). We identify two additional MgII absorbers, one of them with a rest frame equivalent width larger than 1A. The distance between the GRB and the absorber measured in this paper confirms that the power of the GRB radiation can influence the conditions of the interstellar medium up to a distance of at least several hundred pc. For the intervening absorbers, we confirm the trend that on average one strong intervening system is found per afterglow, as has been noted in studies exhibiting an excess of strong MgII absorbers along GRB sightlines compared to quasars.Comment: 8 Pages, 7 ps figures, A&A in pres

    A Comparison of PCA-LDA and PLS-DA Techniques for Classification of Vibrational Spectra

    Get PDF
    Vibrational spectroscopies provide information about the biochemical and structural environment of molecular functional groups inside samples. Over the past few decades, Raman and infrared-absorption-based techniques have been extensively used to investigate biological materials under different pathological conditions. Interesting results have been obtained, so these techniques have been proposed for use in a clinical setting for diagnostic purposes, as complementary tools to conventional cytological and histological techniques. In most cases, the differences between vibrational spectra measured for healthy and diseased samples are small, even if these small differences could contain useful information to be used in the diagnostic field. Therefore, the interpretation of the results requires the use of analysis techniques able to highlight the minimal spectral variations that characterize a dataset of measurements acquired on healthy samples from a dataset of measurements relating to samples in which a pathology occurs. Multivariate analysis techniques, which can handle large datasets and explore spectral information simultaneously, are suitable for this purpose. In the present study, two multivariate statistical techniques, principal component analysis-linear discriminate analysis (PCA-LDA) and partial least square-discriminant analysis (PLS-DA) were used to analyse three different datasets of vibrational spectra, each one including spectra of two different classes: (i) a simulated dataset comprising control-like and exposed-like spectra, (ii) a dataset of Raman spectra measured for control and proton beam-exposed MCF10A breast cells and (iii) a dataset of FTIR spectra measured for malignant non-metastatic MCF7 and metastatic MDA-MB-231 breast cancer cells. Both PCA-LDA and PLS-DA techniques were first used to build a discrimination model by using calibration sets of spectra extracted from the three datasets. Then, the classification performance was established by using test sets of unknown spectra. The achieved results point out that the built classification models were able to distinguish the different spectra types with accuracy between 93% and 100%, sensitivity between 86% and 100% and specificity between 90% and 100%. The present study confirms that vibrational spectroscopy combined with multivariate analysis techniques has considerable potential for establishing reliable diagnostic models
    corecore