
Citation: Lasalvia, M.; Capozzi, V.;

Perna, G. A Comparison of

PCA-LDA and PLS-DA Techniques

for Classification of Vibrational

Spectra. Appl. Sci. 2022, 12, 5345.

https://doi.org/10.3390/

app12115345

Academic Editor: Anna Annibaldi

Received: 7 May 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Comparison of PCA-LDA and PLS-DA Techniques for
Classification of Vibrational Spectra
Maria Lasalvia , Vito Capozzi and Giuseppe Perna *

Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71122 Foggia, Italy;
maria.lasalvia@unifg.it (M.L.); vito.capozzi@unifg.it (V.C.)
* Correspondence: giuseppe.perna@unifg.it

Abstract: Vibrational spectroscopies provide information about the biochemical and structural en-
vironment of molecular functional groups inside samples. Over the past few decades, Raman and
infrared-absorption-based techniques have been extensively used to investigate biological materials
under different pathological conditions. Interesting results have been obtained, so these techniques
have been proposed for use in a clinical setting for diagnostic purposes, as complementary tools to
conventional cytological and histological techniques. In most cases, the differences between vibra-
tional spectra measured for healthy and diseased samples are small, even if these small differences
could contain useful information to be used in the diagnostic field. Therefore, the interpretation of
the results requires the use of analysis techniques able to highlight the minimal spectral variations
that characterize a dataset of measurements acquired on healthy samples from a dataset of measure-
ments relating to samples in which a pathology occurs. Multivariate analysis techniques, which can
handle large datasets and explore spectral information simultaneously, are suitable for this purpose.
In the present study, two multivariate statistical techniques, principal component analysis-linear
discriminate analysis (PCA-LDA) and partial least square-discriminant analysis (PLS-DA) were used
to analyse three different datasets of vibrational spectra, each one including spectra of two different
classes: (i) a simulated dataset comprising control-like and exposed-like spectra, (ii) a dataset of
Raman spectra measured for control and proton beam-exposed MCF10A breast cells and (iii) a dataset
of FTIR spectra measured for malignant non-metastatic MCF7 and metastatic MDA-MB-231 breast
cancer cells. Both PCA-LDA and PLS-DA techniques were first used to build a discrimination model
by using calibration sets of spectra extracted from the three datasets. Then, the classification perfor-
mance was established by using test sets of unknown spectra. The achieved results point out that the
built classification models were able to distinguish the different spectra types with accuracy between
93% and 100%, sensitivity between 86% and 100% and specificity between 90% and 100%. The present
study confirms that vibrational spectroscopy combined with multivariate analysis techniques has
considerable potential for establishing reliable diagnostic models.

Keywords: Raman; FTIR; PCA-LDA; PLS-DA

1. Introduction

Over the past decades, various works have been published to promote the use of
vibrational spectroscopy as a diagnostic tool in clinical practice, with the role of a comple-
mentary technique to support the results obtained by means of conventional histological
and cytological analysis techniques [1–6]. The two main vibrational techniques are Raman
and Fourier Transform Infrared (FTIR) spectroscopies, which both are able to provide
information about the different types of functional groups and their relative content inside
the investigated cell or tissue samples [7,8]. In particular, in both cases the sample is excited
by means of a radiation beam and the spectral intensity of the inelastically scattered (Ra-
man) or absorbed (FTIR) radiation from different biological macromolecules (nucleic acids,
proteins, lipids, etc.) is detected. However, vibrational spectra measured from normal and
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pathological samples are often similar to each other, due to the fact that spectral features
related to specific cellular components only slightly change as a result of chemical–physical
stress or the onset of pathology. So, the visual inspection of the measured spectrum in most
cases is not enough to make a reliable diagnosis.

Such a problem can be addressed by collecting many spectra from the investigated
samples and by analysing them through multivariate statistical methods. Multivariate
analysis of the measured spectra is a critical step for data interpretation and the possibility
of providing a reliable diagnostic result [9]. Multivariate techniques have proved to be
an efficient tool for obtaining information about large datasets of spectral measurements,
each one consisting of many variables which are the scattered (as for Raman) or absorbed
(as for FTIR) radiation intensity at hundreds of wavenumber values [10]. In fact, these
methods allow the visualization of similarities and differences in the data and to build
classification models which can be used to predict the class of unknown samples of the
same type: consequently, they are very promising as diagnostic tools.

The multivariate analysis techniques can be divided into unsupervised and supervised
methods. The former aim to detect similarities and differences inside a dataset comprising
spectra of different classes when there is no information available regard to the class to
which they belong. Principal Component Analysis (PCA) is the most popular unsupervised
method [11]. On the contrary, supervised methods label the classes to be differentiated.
They are based on two successive steps: firstly, samples whose class is known are used to
build a model with proper parameters that optimize the discrimination between the data
from different classes; then, unknown samples are assigned to a suitable class using the
parameters optimized during the first step. Linear Discriminant Analysis (LDA) and Partial
Least Squares Discriminant Analysis (PLS-DA) are effective supervised methods [11].

Principal Components Analysis (PCA) is one of the most powerful multivariate tech-
niques used for exploratory data analysis, i.e., it provides preliminary approaches to find
differences and similarities among data. In the case of spectroscopy investigation, the
data are the spectra measured from different samples. All the measured spectra can be
represented as a dataset or matrix X, with n rows, corresponding to the measured samples,
and m columns, each one corresponding to the spectral signal for a specific wavenumber
value. The first aim of PCA is to reduce the dimensionality of large datasets (those includ-
ing all the values of spectral variables in a wide wavenumber range for all the measured
samples). The dimensionality reduction is performed by finding new variables, that are
linear functions of those of the original dataset, that successively maximize variance and
that are uncorrelated with each other [12]. Briefly, PCA transforms the m original variables,
consisting of the signal values for the m wavenumber values, into a new set of m variables,
called principal components (PCs), each one is a linear combination of the m original
variables. Each original spectrum takes specific values in the set of PCs: such values are
called scores. The criterion according to which the first PC is chosen is that it contains most
of the variance of the scores, and each subsequent PC contains less variance. A score plot,
reporting the score values of two different PCs for all the n samples, allows for visualizing
differences and similarities among the n samples, based on the original spectral characteris-
tics. The coefficients describing the influence of the original variables on the score values
for a given PC are known as loadings: they give information about the wavenumber values
at which the spectral signals furnish the main variability inside the dataset, corresponding
to changes in the molecular components contributing to the spectra. In fact, many works
reported the discrimination of vibrational spectra from biological samples of different types
through PCA score plots as well as the identification of differences in their biochemical
content through the main spectral features of the loading plots [13–16].

LDA is a supervised classification method which can be used to classify objects
(such as spectra measured from unknown samples) as belonging to classes which have
been specified before the model is created [11]. In particular, LDA is based on a linear
transformation of m variables describing n samples belonging to different classes, so that
samples from the same class are close together but samples from different classes are far
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apart from each other. This goal is achieved by means of a mathematical classification
algorithm (based on a Mahalanobis distance calculation between the samples for each
class) which maximizes the distance between the means of the classes while minimizing
the variance within each class. So, a predicted class is assigned to each sample. After the
classification model has been built, it is later used for allocating new and unknown samples
to the most probable class. However, the LDA method cannot be applied when the number
of spectral variables is larger than the number of samples (m < n) [17]. This issue can be
solved by calculating PCA for the spectral data prior to LDA and applying LDA to the PCA
scores: this is how the PCA-LDA algorithm works.

N. Iturrioz-Rodriguez et al. showed that Raman spectroscopy can identify changes in
the molecular composition of healthy astrocytes compared to glioblastoma patient-derived
cells and that, associated with PCA-LDA, can become a diagnostic tool with accuracy values
between 80% and 100% [18]. PCA-LDA statistics were also used to classify oral squamous
cell carcinoma cells in saliva samples with an accuracy of 90%, in the case of the Raman
data set, and 82%, for the FT-IR one [19]. The PCA-LDA model also has been demonstrated
to yield 100% classification accuracy to differentiate FTIR spectra from hepatitis C infected
and healthy freeze-dried sera samples [20]. The PCA-LDA discrimination model correctly
classified also FTIR spectra from gynaecological cancer samples into malignant and benign
groups with accuracies of 96% and 93% for the k-fold and “leave one out” validation
schemes, respectively [21].

PLS-DA is a supervised classification technique which combines partial least squares
(PLS) regression with LDA. Firstly, a PLS model is built from the spectral data (X matrix)
and a dependent variable describing the class of spectra (Y matrix), so that Y = XB + E,
where B is a matrix of regression coefficients and E is a matrix of residuals. The X matrix
consists of n rows, each one related to a sample, and m columns, each one related to the
signal intensity for each wavenumber value, whereas the Y matrix consists of n rows, each
one is a categorical variable that specifies the type of sample (samples of different type are
described by different discrete numbers that encode the class membership, as −1 and +1).
Such a PLS model, that relates the variations of the spectral data to the class of cells from
which the spectra were measured, firstly transforms the original spectral variables into a
set of a few latent variables (LVs), called factors. Then these new variables are used for
regression with the dependent variable [11,22]. In the PLS models, scores and loadings
specify how the samples and variables are projected along the factors. In particular, PLS
scores, similarly to PCA scores, are the sample coordinates along the model components:
they are computed in such a way that they capture the part of the structure in X which is
most predictive for Y. The PLS loadings specify how much each X-variable contributes to a
specific model component, in the same way as the PCA loadings do. A two-dimensional
scatter plot of scores for two specified factors gives information about patterns in the
samples, i.e., the closer the samples are in the scores plot, the more similar they are with
respect to the two components concerned, whereas distant samples in the score plot are
different. The corresponding loadings plot provides information about which variables
are responsible for differences between samples. In addition, the regression coefficients
determine what is the weight of each variable when predicting a particular Y response, i.e.,
variables with a large regression coefficient play an important role in the regression model.
A positive coefficient shows a positive link with the response, and a negative coefficient
shows a negative link. The difference between loadings and regression coefficients is that
the former is related to each LV, whereas the latter refers to a model with a specific number
of LVs. After the PLS regression model has been built, a linear discriminant classifier is
used for classifying unknown samples (spectra). When −1 and +1 are the encoded values
of class membership, if the predicted value is above 0, a corresponding object is considered
a member of a class and if not it is considered a stranger.

Recently, PLS regression algorithms have been widely used in the biomedical field to
construct predictive models based on Raman and FTIR spectral signals. R. Pinto Aguiar
et al. classified Raman spectra from brain tissue using PLS-DA discrimination into normal
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(cerebellum and meninges) and tumours (glioblastoma, medulloblastoma, schwannoma,
meningioma) with an accuracy of 94.1% [23]. Raman spectroscopy was also used by D.
Cullen et al. to investigate lymphocytes of patients with late radiation toxicity following
radiotherapy treatment because of prostate cancer: the PLS-DA model developed to classify
patients using known radiation toxicity scores achieved an accuracy value of 93% [24].
X. Yang et al. reported PLS-DA results about first derivative FTIR data in nucleic acids
spectral range collected from serum samples of patients with lung cancer and healthy
people: they achieved 87.10% accuracy for discrimination of the two types of samples [25].
FTIR and PLS-DA were also used to develop a prediction model based on the spectra
of blood serum samples collected from healthy people and patients affected by attention
deficit and hyperactivity disorder: the model was able to distinguish ADHD patients from
healthy individuals with an accuracy of 100% [26].

Overall, these two different classification models can have different performances
when applied to the same dataset for diagnostic purposes. Therefore, it is important to
compare the predicted results of both models in order to optimize the diagnostic phase.
Hence, the aim of the present study is to evaluate and compare the performance parameters
of the PCA-LDA and PLS-DA models for the class prediction of three different datasets of
vibrational spectra: a simulated dataset and two experimental datasets of Raman and FTIR
spectra, respectively. The comparison is performed by evaluating the values of accuracy,
sensitivity and specificity obtained in the class prediction for a subset of each of the three
datasets, used as a test set. The obtained results point out that both the classification
models were able to predict the class of the different spectra with high values of accuracy
(93% ÷ 100%), sensitivity (86% ÷ 100%) and specificity (90% ÷ 100%). So, if datasets
of different types of spectra are available, the application of both classification models
to the prediction of the class of unknown measured spectra is promising as a reliable
complementary diagnostic tool in the clinical setting.

2. Materials and Methods
2.1. Simulated Spectra

Vibrational spectra were simulated by overlapping several Gaussian functions. In par-
ticular, a basic simulated vibrational spectrum yR was built, in the 750–1750 cm−1 spectral
range, by means of 15 component functions yi, as described by the following equation:

yR =
15

∑
i=1

yi =
15

∑
i=1

Aie
− (x−x0i)

2σ2
i

where Ai, x0i and σi are the amplitude, wavenumber and broadening parameters, respec-
tively, of each yi. The values assigned to such parameters are reported in Table S1. In
particular, the relative intensity, spectral wavenumber and broadening of each yi have been
chosen in order to yield a yR spectrum similar to a typical vibrational spectrum measured
from a cellular sample. Such simulated function yR can be considered to be a model of
spectrum measured for a control-like sample. In addition, the Ai values corresponding
to the peak centred at 785, 830, 1090 and 1580 cm−1 have been decreased by 10% with
respect to the corresponding values of the control-like spectrum, in order to simulate a
basic exposed-like spectrum.

Starting from the basic spectra, 25 different spectra were obtained for the two types
of samples (control-like and exposed-like), by randomizing the values of Ai of each single
peak in a ±10% range of values reported in Table S1.

Each of these 50 single simulated spectra was area normalized, i.e., the intensity
value corresponding to each wavenumber value was divided by the total intensity of
the spectrum. The basic Raman spectra were calculated by means of SigmaPlot software
(version 12.5, Systat Software).
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2.2. Measured Spectra

Three different cellular models were chosen to confirm the results obtained for simu-
lated spectra:

• MCF10A cells, as a model of a normal breast cellular line. These cells were exposed to
proton beam radiation with a dose of 4 Gy, which causes cellular damage involving
nucleic acid and DNA/RNA components, as reported in [27]. Unexposed cells were
considered as a control sample. Both control and exposed cells were measured by
means of a Raman confocal micro-spectrometer apparatus (Labram from Jobin–Yvon
Horiba) and the Raman spectra were pre-processed as described in [27]. Briefly, Raman
spectra were measured for about 30 randomly chosen single cells grown on coverslip
slides; each cell was excited by the 514.5 nm line from an Ar ion laser with about
10 mW power, which was focused, by means of a 100x oil immersion objective, on
the cell nucleoplasm region; three acquisitions of 10 s each was averaged to produce
each Raman spectrum. The Raman scattered signal was analysed, in backscattering
geometry, by a spectrometer equipped with a 600 grooves/mm grating and it was
detected by a charged coupled device cooled at 223 K.

• MCF7 and MDA-MB-231, as a model of malignant non-metastatic (MCF7) and metastatic
(MDA-MB-231) breast cancer cell lines. The FTIR spectra of such cells were measured
in transflection mode by means of an FTIR Microscope HYPERION 2000 connected to
a Vertex 70 Bruker interferometer (Bruker Optik GmbH), as described in [28]. Briefly,
each FTIR spectrum was recorded, using a 15× objective, in the 1000–4000 cm−1

spectral range with the resolution of 4 cm−1 and 64 scans. The sampling area was
about 80 × 80 µm in size, including 3–4 cells of each type. The absorption signal was
detected with an MCT (mercury cadmium telluride) detector (cooled to liquid N2
temperature). For each experiment, about 30 cells were measured.

2.3. Data Analysis

In order to evaluate the classification models, each of the three different groups of
spectra was separated into a calibration set and a test set, comprising, respectively, about
70% and 30% of the total number of spectra of each group. The spectra assigned to the test
group were randomly chosen using a random number generator.

Exploratory data analysis was performed for each calibration set by means of PCA, in
order to visualize in the score plots the separation of the two different classes of samples
and the spectral variables to which this separation is related. Full cross-validation was used
to validate the PCA results.

Classification models for discriminating samples from the two classes of each group
were built by using the PCA-LDA and PLS-DA techniques for the calibration set, whereas
the test set is used to evaluate the model classification performance, that is the obtained
values of accuracy, sensitivity and specificity. Accuracy corresponds to the total number of
samples correctly classified considering true and false negatives, sensitivity assesses the
ability of the test to classify positive cases (e.g., cases with disease) while specificity is a
measure of the ability of the test to identify negative cases (e.g., cases without disease).

All chemometric analyses were performed with the Unscrambler X CAMO software
(version 10.4), whereas t-test analysis was performed by SigmaPlot software (version 12.5,
Systat Software, San Jose, CA, USA).

3. Results and Discussion

The normalized simulated spectra of control-like and exposed-like types were in-
dependently averaged in order to obtain mean spectra, which are shown in Figure 1a,b,
respectively. As expected, the difference between control and exposed mean spectra,
shown in Figure 1c, is characterized by large positive peaks centred at 785, 830, 1090 and
1580 cm−1, corresponding to the spectral peaks whose intensity has been decreased for
the basic spectrum in order to simulate damage in exposed-like type spectrum. The other
positive and negative peaks in Figure 1c are related to random intensity differences that
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affect the mean spectra and they are particularly relevant for the largest intensity features,
as those centred at 1450 cm−1, 1660 cm−1 and 1200–1400 cm−1 spectral range.
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Figure 1. Synthetic spectra modelling control (a) and exposed (b) samples. The mean spectra are
reported by blue and red lines in (a,b), respectively. Standard deviation spectra are also reported as
dashed lines and the grey area corresponds to spectral values between mean ± standard deviation
values. The spectral differences between mean values are reported in (c) and the wavenumber values
of spectral features mainly contributing to such a difference are labelled for clarity.

Similarly, the normalized mean Raman spectra of unexposed and proton-exposed
MCF10A cells are plotted in Figure 2a,b, respectively. Such spectra are characterized by
Raman peaks and spectral features related to the main cellular components, as nucleic acids
(784, 1096, 1340, 1373, 1490 and 1578 cm−1), proteins (1003, 1032, 1128, 1207, 1260, 1340,
1615 and 1662 cm−1) and lipids (1128, 1300 and 1440 cm−1) [29]. The positive peaks in the
difference spectrum in Figure 2c suggest that the main effect of radiation exposure on the
Raman spectra consists in a relative decrease of nucleic acid components, as a consequence
of larger exposure damage to DNA/RNA than to protein and lipid components [27]. A
significant intensity decrease of the Raman peaks related to the phosphodiester bond (at
784 cm−1) and DNA bases ring modes (at 1574 cm−1) was also reported by Synytsya et al.
in proton irradiated calf thymus DNA [30]. Modification of the above Raman peak related
to nucleic acids was also reported by K. Sofinska et al. for cellular samples exposed to
different types of ionizing radiation, such as proton and γ-rays [31].
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Figure 2. Raman spectra of control (a) and proton-exposed (b) MCF10A cells. The mean spectra are
reported by blue and red lines in (a,b), respectively. Standard deviation spectra are also reported as
dashed lines and the grey area corresponds to spectral values between mean ± standard deviation
values. The spectral differences between mean values are reported in (c) and the wavenumber values
of spectral features mainly contributing to such a difference are labelled for clarity.

Furthermore, the infrared absorption spectra of MCF7 and MDA cells, shown in
Figure 3a,b, respectively, are characterized by spectral peaks and bands related to nucleic
acids (1082, 1117 and 1227 cm−1), proteins (1165, 1306, 1390, 1448, 1535 and 1637 cm−1)
and lipids (1390, 1448 and 1736 cm−1). The difference spectrum in Figure 3c indicates that
the two types of cells can be biochemically discriminated according to the larger relative
amount of nucleic acid content in MCF7 cells with respect to MDA ones, as suggested by
the spectral peak at 1082 and 1227 cm−1, whereas the peaks at about 1535 and 1637 cm−1

are due to a relative spectral shift of the amide II and I band for the two types of cell [28].
Both such results are in good agreement with those reported in the literature. In particular,
both Talari et al. [32] and Abramczyk et al. [33] found a larger relative amount of nucleic
acids in the MCF7 cells with respect to MDA cells. As for the shifts of amide I and II bands,
they might be connected with changes in the secondary protein structures occurring during
the process of carcinogenesis [28].
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Figure 3. FTIR spectra of MCF7 (a) and MDA (b) cells. The mean spectra are reported by blue and
red lines in (a,b), respectively. Standard deviation spectra are also reported as dashed lines and the
grey area corresponds to spectral values between mean ± standard deviation values. The spectral
differences between mean values are reported in (c) and the wavenumber values of spectral features
mainly contributing to such a difference are labelled for clarity.

The difference plots indicate that, for all three cases, important intensity differences
between the mean spectra of two types of cells characterize the investigated range. In order
to show whether these spectral differences would be enough to discriminate and classify the
two types of cells, we firstly analysed data by means of the PCA technique. In particular,
samples from the calibration sets were analysed by PCA, using a full cross-validation
method. Although PCA is not able to provide classification, it is largely used for data
interpretation and visualization, as well as to reduce dimension by extracting information
from high-dimension data to project them into a lower dimension. In particular, PCA score
plots are able to visualize the similarity and differences between samples and PCA loading
plots provide information about the spectral variables responsible for the differences.

Figure 4a shows the score plots of PC1/PC4, with the percentage of each PC in the
axis, for the simulated dataset. It has been verified that the first 7 principal components
carried around 99% of all the spectral variation found in the dataset. As is visible in the
score plot, the PC4 provides the main contribution to the discrimination of control-like
spectra from exposed-like ones. In particular, control-like spectra have negative PC4 values
and exposed-like spectra are characterized by positive PC4 values, with minor overlap.
The results of the t-test analysis performed for the distributions of PC4 score values for
the two types of spectra prove that they are significantly different, as deduced from the
box plots on the right side of Figure 4a. The representation of the loadings of PC4 in
Figure 4b points out four intense negative peaks (at 785, 830, 1090 and 1580 cm−1) whose
spectral positions correspond to those of the four positive peaks in the difference of mean
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spectra shown in Figure 1c. Therefore, PCA confirms that the two types of spectra can be
mainly discriminated according to PC4 and such discrimination is related to the simulated
spectral peaks whose intensity was changed to differentiate between control-like and
exposed-like spectra.
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Figure 4. PC4 vs. PC1 score plot (a) for the synthetic control (blue dots) and exposed (red dots)
vibrational spectra. The box plots of the PC4 score values are shown on the right side of (a): the
results of the t-test point out that the two distributions of score values are significantly different
(p < 0.001). Loading 4 spectrum is reported in (b).

Similar results occur for Raman spectra of control- and proton-exposed MCF10A cells.
For the spectra of such cells, the first 7 principal components carried around 90% of all the
spectral variation found in the whole dataset. The score plot in Figure 5a points out that
the PC4 component discriminates control from exposed cells, where control cells present
mainly positive PC4 score values and exposed cells have mainly negative PC4 score values.
Although overlapping score values are more major than in Figure 4a, the distributions of
score values are statistically different, as can be deduced from the box plots on the right
side of Figure 5a obtained by the t-test analysis. A confirmation that PC4 discriminates
between the two types of cells is obtained from Figure 5b, where values of PC4 loadings are
shown. The similarity of the spectrum in Figure 5b with that in Figure 2c is very evident.
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The positive peaks in Figure 5b correspond to Raman peaks due to nucleic acid cellular
components, while the spectral positions of the negative peaks correspond to spectral
Raman signals related to cellular protein and lipid components, as discussed above.
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Figure 5. PC4 vs. PC1 score plot (a) for the control (blue dots) and exposed (red dots) Raman spectra
of MCF10A cells. The box plots of the PC4 score values are shown on the right side of (a): the results
of the t-test point out that the two distributions of score values are significantly different (p = 0.001).
Loading 4 spectrum is reported in (b).

Finally, PCA results for the dataset of MCF7 and MDA cells are shown in Figure 6. For
the FTIR spectra of this dataset, the first 7 principal components carried around 97% of all
the spectral variation found in the whole dataset. The score plot in Figure 6a highlights
that PC1 well discriminate the metastatic MDA cells from the malignant MCF7 ones, with
almost no overlapping score values. In particular, MCF7 and MDA cells have positive
and negative, respectively, PC1 score values and the box plots at the top of Figure 6a
demonstrates that the two distribution are statistically different, according to t-test analysis.
Furthermore, the loading 1 plot in Figure 6b is very similar to the difference plot in Figure 3c,
indicating that MCF7 cells (positive score) have a large relative content of nucleic acid
components (positive loading bands at about 1085 and 1230 cm−1) with respect to MDA



Appl. Sci. 2022, 12, 5345 11 of 20

cells, whereas the spectral features in the 1500–1700 cm−1 range are related to the shift of
the spectral position of amide I and II bands for the two types of cell.
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Figure 6. PC2 vs. PC1 score plot (a) for the MCF7 (blue dots) and MDA (red dots) FTIR spectra. The
box plots of the PC1 score values are shown at the top of (a): the results of the t-test point out that
the two distributions of score values are significantly different (p < 0.001). Loading 1 spectrum is
reported in (b).

Overall, the presence of several peaks in the loading plots of the discriminating PCs
and the agreement of their spectral positions with those of the difference plots confirmed
the discrimination potential of vibrational spectra. Therefore, classification techniques can
be applied to the test sets of the three datasets, in order to evaluate the discrimination
performance.

Hence, following the PCA, linear discrimination analysis was first performed. The
first seven PC scores of the calibration set of simulated spectra were used as input data for
LDA to build a diagnostic model that will be used for the classification of unknown spectra.
The PCA-LDA model correctly classifies all the 36 spectra, as visible in the classification
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plot shown in Figure 7a (filled circles). In fact, a discriminant score for the attribution of an
object (spectrum) to each class is calculated and the object is assigned to that class for which
the discriminant score is the largest. Hence, in Figure 7a samples lying close to zero for a
class are associated with that class. Instead, the accuracy of the PCA-LDA model for the
classification of Raman spectra from unexposed and proton-exposed MCF10A cells, shown
in Figure 7b is 87.5%. Indeed, such a model, obtained by using the first seven PC scores
of the calibration set as input for the LDA model, erroneously attributes some samples of
the calibration set to a different class from the one they actually belong to, as visible in
Figure 7b from the circle crossed samples. In particular, 4 control spectra were attributed
to exposed class and 1 exposed spectrum was attributed to control class. Lastly, a 100%
accuracy is obtained for the PCA-LDA classification model related to MCF7 and MDA cells,
as visible in Figure 7c.
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Figure 7. Discrimination plot obtained from the results of Linear Discriminant Analysis model
developed using 7 principal components from Principal Component Analysis. The scatter plot shows
the discrimination of synthetic control-like spectra (filled blue circles) and exposed-like vibrational
spectra (filled red circles) in (a), that of Raman spectra of control (filled blue circles) and exposed
(filled red circles) MCF10A cells in (b) and that of FTIR spectra of MCF7 (filled blue circles) and
MDA (filled red circles) cells in (c). Crossed circles in (b) are related to samples of the calibration set
which are erroneously attributed to the PCA-LDA model. The projections of the test samples on the
PCA-LDA model are shown as hollow circles. One misclassified sample of the test set is enclosed
inside a circle and labelled in (b).
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Despite the small number of spectra used by us, the accuracy value of the PCA-
LDA model is similar to that obtained by T. Ning et al. regarding the discrimination
of two different types of breast cancer tissue from healthy breast tissue by means of
Raman spectroscopy: in fact, their accuracy, validated through full cross-validation, is
equal to 88.3% [34]. Furthermore, Y. Lin et al. declared to discriminate breast cancer by
SERS spectra of serum proteins from cancer patients with respect to those from healthy
volunteers with the PCA-LDA model, achieving an accuracy value of 84% with a ten-
fold cross-validation method [35]. Similar accuracy values with the PCA-LDA algorithm
applied to Raman spectra have been obtained for discrimination of normal parenchyma
and follicular patterned thyroid nodules (78%) and for carcinoma versus adenoma follicular
lesions (89%) [36]. Furthermore, Raman spectra from normal and tumour oral tissues were
differentiated under the PCA-LDA model with an accuracy of 81.25% with full and k-fold
cross-validation methods [37].

Instead of cross-validation, we prefer to estimate the sensitivity and specificity of
the classification model using a set of data (test set) that are external and independent of
those used to build the model. This procedure is performed in view of its possible use
in a clinical setting for diagnostic purposes. Indeed, in this case, some spectra should be
acquired from areas containing material (cells, tissues) that are difficult to diagnose and
the classification technique applied to these spectra, having available a dataset of spectra
previously acquired from pathological and healthy areas.

Therefore, the prediction parameters of the developed PCA-LDA model were tested
using samples of the test sets from the two classes. The results of the model prediction
are summarized in Table 1. Almost all the tested samples were predicted as belonging to
the proper class, except one MCF10A exposed sample which is attributed to the control
class. Therefore, the model was able to rightly classify the test samples and the accuracy,
sensitivity and specificity achieved maximum values in the cases of simulated spectra and
FTIR spectra, whereas these values were 93%, 86% and 100%, respectively, in the case
of proton-exposed MCF10A cells. In order to obtain a visual picture of the classification
performance, the test samples were projected on the classification plot in Figure 7, where
they are represented by hollow circles. It is clearly visible that all the representative points
of the test set samples are in proximity to the representative points of the calibration set
samples, with only one exception in Figure 7b due to an MCF10A exposed sample which
has been misclassified, as discussed above.

The procedure of optimizing the model using a calibration test with cross-validation
and then evaluating the model performance using a test set was also carried out by H.
Li et al., who measured Raman spectra from various types of breast cancer [38]. In par-
ticular, they found that the PCA-LDA model correctly classifies all samples in the test set.
Furthermore, N. Iturrioz-Rodríguez et al. have recently used Raman spectroscopy and
PCA-LDA model for the classification of glioblastoma multiforme cells derived from brain
tumour patients versus astrocytes derived from healthy patients, using a test set consisting
of different cells than the calibration set [18]. They stated an average classification accuracy
of 92.5%. Therefore, the results we obtained about the performance parameters of the
PCA-LDA technique applied to different types of vibrational spectra are in good agreement
with those reported by other authors about spectra obtained with the Raman technique.



Appl. Sci. 2022, 12, 5345 14 of 20

Table 1. Performance parameters for the three types of spectra. The parameter values are estimated
by considering the results obtained for the spectra of the test sets. Accuracy represents the total rate
of spectra correctly classified; sensitivity is the rate of spectra classified as exposed-like (for simulated
spectra), exposed (for Raman spectra) and metastatic MDA (for FTIR spectra) with respect to the
spectra which refer actually to exposed-like, exposed and MDA samples, respectively; specificity is
the rate of spectra classified as control-like (for simulated spectra), control (for Raman spectra) and
non-metastatic MCF7 (for FTIR spectra) with respect to the spectra which refer actually to control-like,
control and MCF7 samples, respectively.

Simulated Spectra MCF10A Cells Raman Spectra MCF7 and MDA Cells FTIR Spectra

PCA-
LDA total

predicted
control-

like

predicted
exposed-

like
total predicted

control
predicted
exposed total predicted

MCF7
predicted

MDA

actual
control 7 7 0 7 7 0 actual

MCF7 10 10 0

actual
exposed 7 0 7 7 1 6 actual

MDA 10 0 10

total 14 7 7 14 8 6 total 20 10 10

Accuracy
100%

Sensitivity
100%

Specificity
100%

Accuracy
93%

Sensitivity
86%

Specificity
100%

Accuracy
100%

Sensitivity
100%

Specificity
100%

PLS-DA total
predicted
control-

like

predicted
exposed-

like
total predicted

control
predicted
exposed total predicted

MCF7
predicted

MDA

actual
control 7 7 0 7 7 0 actual

MCF7 10 9 1

actual
exposed 7 0 7 7 1 6 actual

MDA 10 0 10

total 14 7 7 14 8 6 total 20 9 11

Accuracy
100%

Sensitivity
100%

Specificity
100%

Accuracy
93%

Sensitivity
86%

Specificity
100%

Accuracy
95%

Sensitivity
100%

Specificity
90%

Furthermore, a PLS model was built for the calibration set of simulated spectra by
using 7 latent variables. Clear discrimination of the control and exposed spectra is visible
in Figure 8a, which shows (filled circles) the score plot of Factor 1 and Factor 2 of the PLS
model. In particular, the separation between the two types of spectra can be observed
along both factors. Such a feature is also confirmed by the plot of the regression coefficients,
shown in Figure 8b for two components of the regression model. It can be deduced that
the most important variables in the PLS model were those corresponding to wavenumbers
around 780, 830, 1090 and 1580 cm−1, as expected because the spectral peaks centred at
such wavenumber values are mainly responsible for the difference between the average
spectra of control-like and exposed-like spectra reported in Figure 1c. The performance of
the prediction ability of the built PLS model, checked by using just the samples from the
test set, is summarized in Table 1. All the unknown samples were correctly assigned to the
proper class, so producing maximum values of the performance parameters. Such results
can be also visualized by reporting the projections of the test samples on the Factor 2 vs.
Factor 1 score plot, shown as hollow circles in Figure 8a.
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Figure 8. Scores plot (Factor 2 vs. Factor 1) of the developed PLS-DA model, showing the calibration
(filled circles) and projected test set (hollow circles) samples for the control-like (blue circles) and
exposed-like (red circles) spectra in (a). The root mean square error for cross-validation (RMSECV) is
0.40. Regression coefficients for the PLS model with two components in (b).

Similarly, the PLS model built for calibration samples of the MCF10A cells clearly
discriminates control from exposed cells mainly according to Factor 1, as visible in Figure 9a
with the filled circles. The similarity of the plot of regression coefficients with two compo-
nents in Figure 9b with the difference between mean spectra of Figure 2c suggests that two
factors are also able to correctly discriminate control from exposed samples according to
the intensity of Raman peaks related to nucleic acids components. As for the prediction
ability of the model, one exposed sample of the test set was misclassified, so determining
accuracy and sensitivity values of 93% and 86%, respectively, as reported in Table 1 and
visible in the scatter plot of the projected samples, shown as hollow circles in Figure 9a.
The misclassified sample of the test set has been labelled for clarity.
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Figure 9. Scores plot (Factor 2 vs. Factor 1) of the developed PLS-DA model about Raman spectra for
control (blue circles) and exposed (red circles) MCF10A cells, showing the calibration (filled circles)
and projected test set (hollow circles) samples in (a). The root mean square error for cross-validation
(RMSECV) is 0.75. One misclassified sample of the test set is enclosed inside a circle and labelled in
(a). Regression coefficients for the PLS model with two components in (b).

Furthermore, the PLS model developed from the calibration samples of the MCF7 and
MDA cells rightly discriminates metastatic from malignant cells according to Factor 1, as
visible in Figure 10a with the filled circles. The regression coefficients of the PLS model
with two components are plotted in Figure 10b: the spectral shape of such plot is analogous
to that of Figure 3c, which reports the difference spectrum between MCF7 and MDA mean
spectra. Therefore, it can be deduced that two LVs correctly discriminate metastatic cells
from malignant ones. Furthermore, in this case, the prediction ability of the model was
good but not perfect because one MCF7 sample of the test set was misclassified, as reported
in Table 1. The obtained sensitivity value was 100%, whereas the accuracy and specificity
values were 95% and 90%, respectively. The misclassified sample is also visible in Figure 10a
as red hollow circles which have been labelled for clarification purposes. In a comparison of
the results obtained by the PLS-DA classification with those of the PCA-LDA classification,
it is evident that the latter has a better performance in terms of accuracy and specificity.
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Figure 10. Scores plot (Factor 2 vs. Factor 1) of the developed PLS-DA model about FTIR spectra for
MCF7 (blue circles) and MDA (red circles) cells, showing the calibration (filled circles) and projected
test set (hollow circles) samples in (a). The root mean square error for cross-validation (RMSECV) is
0.31. One misclassified sample of the test set is enclosed inside a circle and labelled in (a). Regression
coefficients for the PLS model with two components in (b).

The above performance parameters values are better than those obtained by W. Liu et al.,
who used patient tissues measured by Raman spectroscopy associated with the PLS-DA
model and full cross-validation to diagnose colorectal cancer with a sensitivity of 77.7%, a
specificity of 91.0%, and an accuracy of 84.3% [39]. Surface-enhanced Raman spectroscopy
combined with the Lasso-PLS-DA algorithm with full cross-validation was used by G.
Chen et al. for the identification of different tumour states in nasopharyngeal cancer [40]:
they yielded a diagnostic sensitivity of 68% and a specificity of 84.0% for separating T2-T4
stage from T1 stage cancer. Larger values of classification parameters were achieved by X.
Yang et al., who declared 87.10% accuracy, 80% sensitivity and 91.89% specificity by using
the PLS-DA model with test set validation to discriminate first derivative FTIR data in
nucleic acids spectral range collected from serum samples of patients with lung cancer and
healthy people [25]. Recently, high sensitivity and specificity values (more than 90%) were
also reported for the discrimination of FTIR spectra measured for two different melanoma
cell lines (primary IPC-298 and metastatic SK-MEL-30) by using the PLS-DA model with
test set validation [41].
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As evident from the above discussion, the PCA-LDA and PLS-DA techniques are
widely used for the analysis and classification of spectral measurements, together with
other multivariate data classification techniques [37,39,42–44]. However, they have been
mainly used for single datasets including spectra of different types to obtain classifications
(e.g., discrimination of spectra from healthy and diseased cells). On the contrary, in the
present study, the two classification techniques were both used on three different types
of very different spectral datasets, in order to obtain a comparison of the predictions, as
independent as possible from the single dataset. This comparison is useful for choosing the
optimal method. The comparison pointed out the good performance of both methods, with
a prevalence of PCA-LDA which is able to classify FTIR spectra with better accuracy and
specificity than PLS-DA.

4. Conclusions

In this study, both simulated and experimental vibrational spectra were used to
investigate the ability of PCA-LDA and PLS-DA to discriminate spectra related to different
classes. This investigation was carried out in two successive phases: firstly, classification
algorithms were built with the two techniques, using a subset of each dataset as a calibration
set; then, the performance of the constructed models was evaluated by analysing the
classifications performed for a test set, obtained as subsets of the original datasets but which
did not include any of the spectra used for the calibration set. The obtained results were
evaluated according to the values of accuracy, sensitivity and specificity in the classification
of the spectra of the test set of the three datasets. They showed that both models have good
performance, although the PCA-LDA model seems a little better than the PLS-DA model
for a lightly major accuracy and specificity in the classification of FTIR spectra.

Although good results have been achieved in the classification of vibrational spectra,
our study has been designed as a “proof of concept”, because it presents limits that must be
overcome before a possible adoption of multivariate classification of vibrational spectra for
diagnostic purposes could be envisaged. The main limit to overcome concerns the small
number of spectra included in our datasets. In fact, this number would have to be increased
considerably in order to obtain ever more reliable values of the classification parameters.
So, our achieved results should be considered preliminary data. In addition, our results
were obtained for simulated spectra as well as for cell-lines-measured spectra. They should
be confirmed by using ex vivo cells extracted from biopsies of patients, as well as by
using tissues and biofluids. Eventually, it is also necessary to evaluate the performances
of other classification techniques (e.g., k-nearest neighbours, soft independent modelling
of class analogies, support-vector machine,...) in order to evaluate whether they are able
to classify unknown spectra even better than the PCA-LDA and PLS-DA. Nonetheless,
the proposed approach is promising, especially if a PCA-LDA or a PLS model has been
built with a dataset of spectra from samples whose pathological state is known (healthy,
disease, at different stages of the disease, etc.). In this case, a few tens of spectra from the
unknown sample should be measured and considered as test sets for which to perform the
classification by PCA-LDA or PLS-DA and, consequently, make the diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12115345/s1, Table S1: Values of spectral parameters amplitude
(Ai), wavenumber (x0i) and broadening (σi) for each Gaussian peak of the basic control-like and
exposed-like vibrational spectrum.
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