1,374 research outputs found
The X-ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation
We reanalyze the deep Chandra observations of the M87 jet, first examined by
Wilson & Yang (2002). By employing an analysis chain that includes image
deconvolution, knots HST-1 and I are fully separated from adjacent emission. We
find slight but significant variations in the spectral shape, with values of
ranging from . We use VLA radio observations, as well
as HST imaging and polarimetry data, to examine the jet's broad-band spectrum
and inquire as to the nature of particle acceleration in the jet. As shown in
previous papers, a simple continuous injection model for synchrotron-emitting
knots, in which both the filling factor, , of regions within which
particles are accelerated and the energy spectrum of the injected particles are
constant, cannot account for the X-ray flux or spectrum. Instead, we propose
that is a function of position and energy and find that in the inner
jet, , and
in knots A and B, , where is the emitted photon energy and and is the
emitting electron energy. In this model, the index of the injected electron
energy spectrum () is at all locations in
the jet, as predicted by models of cosmic ray acceleration by ultrarelativistic
shocks. There is a strong correlation between the peaks of X-ray emission and
minima of optical percentage polarization, i.e., regions where the jet magnetic
field is not ordered. We suggest that the X-ray peaks coincide with shock waves
which accelerate the X-ray emitting electrons and cause changes in the
direction of the magnetic field; the polarization is thus small because of beam
averaging.Comment: Accepted for publication in ApJ; 21 pages, 9 figures, 2 tables;
abstract shortened for astro-ph; Figures 1, 7 and 8 at reduced resolutio
A Multi-Wavelength Study of the Jet, Lobes and Core of the Quasar PKS 2101-490
We present a detailed study of the X-ray, optical and radio emission from the
jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST
and ATCA images. We extract the radio to X-ray spectral energy distributions
from seven regions of the 13 arcsecond jet, and model the jet X-ray emission in
terms of Doppler beamed inverse Compton scattering of the cosmic microwave
background (IC/CMB) for a jet in a state of equipartition between particle and
magnetic field energy densities. This model implies that the jet remains highly
relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma
~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative
cooling break in the synchrotron spectrum of one of the jet knots, and are able
to interpret this in terms of a standard one-zone continuous injection model,
based on jet parameters derived from the IC/CMB model. However, we note
apparent substructure in the bright optical knot in one of the HST bands. We
confront the IC/CMB model with independent estimates of the jet power, and find
that the IC/CMB model jet power is consistent with the independent estimates,
provided that the minimum electron Lorentz factor gamma_min > 50, and the knots
are significantly longer than the jet width, as implied by de-projection of the
observed knot lengths.Comment: 16 pages, 10 figures, 6 table
1ES 1927+654: Persistent and rapid X-ray variability in an AGN with low intrinsic neutral X-ray absorption and narrow optical emission lines
We present X-ray and optical observations of the X-ray bright AGN 1ES
1927+654. The X-ray observations obtained with ROSAT and Chandra reveal
persistent, rapid and large scale variations, as well as steep 0.1-2.4 keV
(Gamma = 2.6 +/- 0.3) and 0.3-7.0 keV (Gamma = 2.7 +/- 0.2) spectra. The
measured intrinsic neutral X-ray column density is approximately 7e20cm^-2. The
X-ray timing properties indicate that the strong variations originate from a
region, a few hundred light seconds from the central black hole, typical for
type 1 AGN. High quality optical spectroscopy reveals a typical Seyfert 2
spectrum with some host galaxy contamination and no evidence of Fe II
multiplets or broad hydrogen Balmer wings. The intrinsic optical extinction
derived from the BLR and NLR are A_V >= 3.7 and A_V=1.7, respectively. The
X-ray observations give an A_V value of less than 0.58, in contrast to the
optical extinction values. We discuss several ideas to explain this apparent
difference in classification including partial covering, an underluminous BLR
or a high dust to gas ratio.Comment: 8 pages including 10 figures. Accepted for publication in Astronomy
and Astrophysic
VLA Observations of a New Population of Blazars
We present the first deep VLA radio images of flat-spectrum radio quasars
(FSRQ) with multiwavelength emission properties similar to those of BL Lacs
with synchrotron X-rays. Our observations of twenty-five of these sources show
that their radio morphologies are similar to those of other radio quasars.
However, their range of extended powers is more similar to that of BL Lacertae
objects (BL Lacs) and extends down to the low values typical of FR I radio
galaxies. Five out of our nine lobe-dominated sources have extended radio
powers in the range typical of both FR I and FR II radio galaxies, but their
extended radio structure is clearly FR II-like. Therefore, we have not yet
found a large population of radio quasars hosted by FR Is. Two thirds of our
sources have a core-dominated radio morpholgy and thus X-rays likely dominated
by the jet. We find that their ratios of radio core to total X-ray luminosity
are low and in the regime indicative of synchrotron X-rays. This result shows
that also blazars with strong emission lines can produce jets of high-energy
synchrotron emission and undermines at least in part the ``blazar sequence''
scenario which advocates that particle Compton cooling by an external radiation
field governs the frequency of the synchrotron emission peak.Comment: 26 pages, 33 figures. Accepted for publication in Ap
Discovery of an X-ray Jet and Extended Jet Structure in the Quasar PKS 1055+201
This letter reports rich X-ray jet structures found in the Chandra
observation of PKS 1055+201. In addition to an X-ray jet coincident with the
radio jet we detect a region of extended X-ray emission surrounding the jet as
far from the core as the radio hotspot to the North, and a similar extended
X-ray region along the presumed path of the unseen counterjet to the Southern
radio lobe. Both X-ray regions show a similar curvature to the west, relative
to the quasar. We interpret this as the first example where we separately
detect the X-ray emission from a narrow jet and extended, residual jet plasma
over the entire length of a powerful FRII jet.Comment: Accepted for publication in Ap. J. Letters. 4 pages, 3 figure
Catalog of Radio Galaxies with z>0.3. I:Construction of the Sample
The procedure of the construction of a sample of distant () radio
galaxies using NED, SDSS, and CATS databases for further application in
statistical tests is described. The sample is assumed to be cleaned from
objects with quasar properties. Primary statistical analysis of the list is
performed and the regression dependence of the spectral index on redshift is
found.Comment: 9 pages, 6 figures, 2 table
Canonical Particle Acceleration in FRI Radio Galaxies
Matched resolution multi-frequency VLA observations of four radio galaxies
are used to derive the asymptotic low energy slope of the relativistic electron
distribution. Where available, low energy slopes are also determined for other
sources in the literature. They provide information on the acceleration physics
independent of radiative and other losses, which confuse measurements of the
synchrotron spectra in most radio, optical and X-ray studies. We find a narrow
range of inferred low energy electron energy slopes, n(E)=const*E^-2.1 for the
currently small sample of lower luminosity sources classified as FRI (not
classical doubles). This distribution is close to, but apparently inconsistent
with, the test particle limit of n(E)=const*E^-2.0 expected from strong
diffusive shock acceleration in the non-relativistic limit. Relativistic shocks
or those modified by the back-pressure of efficiently accelerated cosmic rays
are two alternatives to produce somewhat steeper spectra. We note for further
study the possiblity of acceleration through shocks, turbulence or shear in the
flaring/brightening regions in FRI jets as they move away from the nucleus.
Jets on pc scales and the collimated jets and hot spots of FRII (classical
double) sources would be governed by different acceleration sites and
mechanisms; they appear to show a much wider range of spectra than for FRI
sources.Comment: 16 figures, including 5 color. Accepted to Astrophysical Journa
The VMC Survey - VI. Quasars behind the Magellanic system
The number and spatial distribution of confirmed quasi-stellar objects (QSOs)
behind the Magellanic system is limited. This undermines their use as
astrometric reference objects for different types of studies. We have searched
for criteria to identify candidate QSOs using observations from the VISTA
survey of the Magellanic Clouds system (VMC) that provides photometry in the
YJKs bands and 12 epochs in the Ks band. The (Y-J) versus (J-Ks) diagram has
been used to distinguish QSO candidates from Milky Way stars and stars of the
Magellanic Clouds. Then, the slope of variation in the Ks band has been used to
identify a sample of high confidence candidates. These criteria were developed
based on the properties of 117 known QSOs presently observed by the VMC survey.
VMC YJKs magnitudes and Ks light-curves of known QSOs behind the Magellanic
system are presented. About 75% of them show a slope of variation in Ks>10^-4
mag/day and the shape of the light-curve is in general irregular and without
any clear periodicity. The number of QSO candidates found in tiles including
the South Ecliptic Pole and the 30 Doradus regions is 22 and 26, respectively,
with a ~20% contamination by young stellar objects, planetary nebulae, stars
and normal galaxies. By extrapolating the number of QSO candidates to the
entire VMC survey area we expect to find about 1200 QSOs behind the LMC, 400
behind the SMC, 200 behind the Bridge and 30 behind the Stream areas, but not
all will be suitable for astrometry. Further, the Ks band light-curves can help
support investigations of the mechanism responsible for the variations.Comment: 17 pages, 15 figures, replaced with accepted version by Astronomy &
Astrophysic
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212
We report on the discovery of Very High Energy (VHE) gamma-ray emission from
the BL Lacertae object 1ES1011+496. The observation was triggered by an optical
outburst in March 2007 and the source was observed with the MAGIC telescope
from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma
with an integrated flux above 200 GeV of (1.58 photons
cm s. The VHE gamma-ray flux is >40% higher than in March-April
2006 (reported elsewhere), indicating that the VHE emission state may be
related to the optical emission state. We have also determined the redshift of
1ES1011+496 based on an optical spectrum that reveals the absorption lines of
the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant
source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
- …
