145 research outputs found

    The selective cleaning behaviour of juvenile blue-headed wrasse (Thalassoma bifasciatum) in the Caribbean

    Get PDF
    Through the removal of parasites, dead skin and mucus from the bodies of visiting reef fish (clients), cleaner fish have a significant ecosystem function in the ecology of coral reefs. Cleaners gain nutrition from these interactions and through offering a ‘service’ are afforded protection from predators. Given these benefits, it is unclear why more fish do not engage in cleaning, and why part-time cleaning strategies exist. On coral reefs, dedicated species clean throughout their life, whereas some species are facultative, employing opportunistic and/or temporary cleaning strategies. Here, we investigate the cleaning behaviour of a facultative species to assess the relative importance of this interaction to the cleaner. Using a combination of focal and event sampling from a coral reef in Tobago, we show that cleaning is not an essential food source for facultative juvenile blue-headed wrasse (Thalassoma bifasciatum), as cleaning rate was unrelated to their foraging rate on the substrate. These wrasse displayed two cleaning strategies: stationary versus wandering cleaning, with cleaning frequency being highest for stationary cleaners. A specific cleaning location facilitated increased cleaning frequency, and wrasse cleaning rate decreased as cleaner or client abundance increased. We also compared juvenile blue-headed wrasse cleaning behaviour to a resident dedicated cleaner, the sharknose goby (Elacatinus evelynae), and showed that, in comparison, juvenile wrasse clean a narrower client range, predominately cleaning three species of gregarious free-ranging surgeonfish (Acanthurus spp.). The wrasse, however, frequently approached these clients without cleaning, which suggests that their selective cleaning strategy may be driven by the acquisition of a particular parasitic food source. Juvenile blue-headed wrasse are generalist foragers, and may thus be limited in their cleaning behaviour by their nutritional requirements, the availability of a suitable cleaning site, and fish density, which ultimately means that they do not adopt more dedicated cleaning roles within the reef community

    Influential Article Review - A Comprehensive Study Distinguishing the Black and Scholes Framework

    Get PDF
    This paper examines business models. We present insights from a highly influential paper. Here are the highlights from this paper: The aim of the paper is to investigate the Black and Scholes model by providing an updated framework of the international literature on the topic, within the field of real option. The purpose of the research is to identify the relevant literature between 1999 and 2015, together with the most important perspectives on the Black and Scholes model as analysed by scholars, in order to provide a useful support to the academic community in their studies. The investigation was carried out only for its economic and corporate insights, with the objective of establishing the strong and weak points highlighted in the defined framework. The method used for the research was based on qualitative approach. International literature on the topic was examined through a research protocol. The research was developed by the identification of four keywords (Real Options Valuation, Real Options Assessment, Black and Scholes, Real Options Pricing) and searching them in two databases, with the purpose of obtaining a wide range of scientific contribution for the analysis. The paper presents an accurate review of the scientific contribution on the topic of the Black and Scholes model; it defines the fields of application, opportunities offered and issues relating to its application, in order to clarify the strong and weak points of the model. The Black and Scholes model of the 1970s is acknowledged to be the most widely used model for evaluating options. Our study shows that this method has been adopted by decision-makers not only for evaluating options but also in other fields. For our overseas readers, we then present the insights from this paper in Spanish, French, Portuguese, and German

    Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies

    Get PDF
    1.Associating with conspecifics afflicted with infectious diseases increases the risk of becoming infected, but engaging in avoidance behaviour incurs the cost of lost social benefits. Across systems, infected individuals vary in the transmission risk they pose, so natural selection should favour risk‐sensitive avoidance behaviour that optimally balances the costs and benefits of sociality. 2.Here we use the guppy Poecilia reticulata‐Gyrodactylus turnbulli host‐parasite system to test the prediction that individuals avoid infected conspecifics in proportion to the transmission risk they pose. 3.In dichotomous choice tests, uninfected fish avoided both the chemical and visual cues, presented separately, of infected conspecifics only in the later stages of infection. 4.A transmission experiment indicated that this avoidance behaviour accurately tracked transmission risk (quantified as both the speed at which transmission occurs and the number of parasites transmitting) through the course of infection. 5.Together, these findings reveal that uninfected hosts can use redundant cues across sensory systems to inform dynamic risk‐sensitive avoidance behaviour. This correlation between the transmission risk posed by infected individuals and the avoidance response they elicit has implications for the evolutionary ecology of infectious disease, and its explicit inclusion may improve the ability of epidemic models to predict disease spread

    East-West divide: temperature and land cover drive spatial variation of Toxoplasma gondii infection in Eurasian otters (Lutra lutra) from England and Wales

    Get PDF
    Toxoplasma gondii, a zoonotic parasite of global importance, infects all endothermic vertebrates, with extensive health implications. The prevalence of this parasite is seldom monitored in wildlife. Here, a semi-aquatic species, the Eurasian otter (Lutra lutra) was used as a model to assess the potential effect of climate, land cover and biotic factors on T. gondii seroprevalence in British wildlife. The Sabin–Feldman cytoplasm-modifying dye test identified T. gondii antibodies in 25·5% of blood samples from otters found dead, mainly as road kill, in England and Wales, between 2004 and 2010. Otters in the east of England were more likely to be infected with T. gondii than those in western regions. Land cover and temperature are key determinants of T. gondii infection risk, with more infection in arable areas and lower infection where temperatures are higher. The probability of T. gondii infection increased with host age, reflecting cumulative exposure with time, but there was no association between T. gondii seroprevalence and cause of host death

    Mechanically induced helix-coil transition in biopolymer networks

    Get PDF
    The quasi-equilibrium evolution of the helical fraction occurring in a biopolymer network (gelatin gel) under an applied stress has been investigated by observing modulation in its optical activity. Its variation with the imposed chain extension is distinctly non-monotonic and corresponds to the transition of initially coiled strands to induced left-handed helices. The experimental results are in qualitative agreement with theoretical predictions of helices induced on chain extension. This new effect of mechanically stimulated helix-coil transition has been studied further as a function of the elastic properties of the polymer network: crosslink density and network aging

    Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata

    Get PDF
    Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.German Research Foundation/[GR1540/30-1]/DFG/AlemaniaUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de BiologĂ­

    Breaking beta: deconstructing the parasite transmission function

    Get PDF
    Transmission is a fundamental step in the life cycle of every parasite but it is also one of the most challenging processes to model and quantify. In most host–parasite models, the transmission process is encapsulated by a single parameterβ. Many different biological processes and interactions, acting on both hosts and infectious organisms, are subsumed in this single term. There are, however, at least two undesirable consequences of this high level of abstraction. First, nonlinearities and heterogeneities that can be critical to the dynamic behaviour of infections are poorly represented; second, estimating the transmission coefficientβfrom field data is often very difficult. In this paper, we present a conceptual model, which breaks the transmission process into its component parts. This deconstruction enables us to identify circumstances that generate nonlinearities in transmission, with potential implications for emergent transmission behaviour at individual and population scales. Such behaviour cannot be explained by the traditional linear transmission frameworks. The deconstruction also provides a clearer link to the empirical estimation of key components of transmission and enables the construction of flexible models that produce a unified understanding of the spread of both micro- and macro-parasite infectious disease agents

    Spatial and seasonal factors are key determinants in the aggregation of helminths in their definitive hosts: Pseudamphistomum truncatum in otters (Lutra lutra)

    Get PDF
    Parasites are typically aggregated within their host populations. The most heavily infected hosts are frequently cited as targets for optimal disease control. Yet a heavily infected individual is not necessarily highly infective and does not automatically contribute a higher proportion of infective parasitic stages than a host with fewer parasites. Here, Pseudamphistomum truncatum (Opisthorchiida) parasitic infection within the definitive otter host (Lutra lutra) is used as a model system. The hypothesis tested is that variation in parasite abundance, aggregation and egg production (fecundity, as a proxy of host infectivity) can be explained by abiotic (season and region) or biotic (host age, sex and body condition) factors. Parasite abundance was affected most strongly by the biotic factors of age and body condition, such that adults and otters with a higher condition index had heavier infections than sub-adults or those with a lower condition index, whilst there were no significant differences in parasite abundance among the seasons, regions (ecological regions defined by river catchment boundaries) or host sexes. Conversely, parasite aggregation was affected most strongly by the abiotic factors of season and region, which were supported by four different measures of parasite aggregation (the corrected moment estimate k, Taylor’s Power Law, the Index of Discrepancy D, and Boulinier’s J). Pseudamphistomum truncatum was highly aggregated within otters, with aggregation stronger in the Midlands (England) and Wales than in the southwestern region of the United Kingdom. Overall, more parasites were found in fewer hosts during the summer, which coincides with the summer peak in parasite fecundity. Combined, these data suggest that (i) few otters carry the majority of P. truncatum parasites and that there are more infective stages (eggs) produced during summer; and (ii) abiotic factors are most influential when describing parasite aggregation whilst biotic factors have a greater role in defining parasite abundance. Together, parasite abundance, aggregation and fecundity can help predict which hosts make the largest contribution to the spread of infectious diseases

    Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts

    Full text link
    Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts (‘donors’) to parasite-naive ‘recipients’. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics
    • 

    corecore