29 research outputs found

    ISOINDOLINOTRIAZOLE DERIVATIVES: SYNTHESIS BY THE AZIDE-ALKYNE CYCLOADDITION CLICK CHEMISTRY

    Get PDF
    A novel series of isoindolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 2-(meta- or para-ethynylphenyl)-4,6-dimethoxyisoindolin-1-ones and several azides. The synthesized triazoles were characterized by IR, 1H NMR, 13C NMR and mass spectral techniques

    Electrochemical behavior of indolone-N-oxides: Relationship to structure and antiplasmodial activity

    Get PDF
    Indolone-N-oxides exert high parasiticidal activity at the nanomolar level in vitro against Plasmodiumfalciparum, the parasite responsible for malaria. The bioreductive character of these molecules was investigated using cyclic voltammetry and EPR spectroelectrochemistry to examine the relationship between electrochemical behavior and antimalarial activity and to understand theirmechanisms of action. For all the compounds (37 compounds) studied, the voltammograms recorded in acetonitrile showed a well-defined and reversible redox couple followed by a second complicated electron transfer. The first reduction (−0.88 VbE1/2b−0.50 V vs. SCE) was attributed to the reduction of the N-oxide function to form a radical nitroxide anion. The second reduction (−1.65 VbE1/2b−1.14 V vs. SCE) was assigned to the reduction of the ketone function. By coupling electrochemistry with EPR spectroscopy, the EPR spectra confirmed the formation of the nitroxide anion radical.Moreover, the experiments demonstrated that a slowprotonation occurs at the carbon of the nitrone function and not at the NO function. A relationship between electrochemical behavior and indolone-N-oxide structure can be established for compounds with R1=―OCH3, R2=H, and electron-withdrawing substituents on the phenyl group at R3. The results help in the design of new molecules with more potent in vivo antimalarial activity

    Powerful Antioxidant and Pro-Oxidant Properties of Cassia roxburghii DC. Leaves Cultivated in Egypt in Relation to Their Anti-Infectious Activities

    Get PDF
    Leaf extracts of Cassia roxburghii DC., prepared in petroleum ether, chloroform, ethyl acetate, butanol, and methanol/water (70:30, v/v), were evaluated as antioxidant, pro-oxidant, anti-infectious, and cytotoxic agents. The major metabolite of each extract was identified by chromatographic and spectroscopic means. The redox properties were assessed with a battery of assays, which revealed that the ethyl acetate extract demonstrated an interesting scavenging activity of DPPH and superoxide radicals and an ascorbic acid-like pro-oxidant activity. All the tested extracts showed moderate antiplasmodial activity against a chloroquine-resistant strain of Plasmodium falciparum, by possible disruption of parasite fine redox balance. Cytotoxicity was evaluated against a human breast cancer cell line. The antimicrobial activities of the extracts were estimated against representative bacterial strains (Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli) and fungal species (Candida albicans, Aspergillus niger). The ethylacetate extract possessed the highest redox properties and exhibited the highest antiplasmodial activity; there was no correlation between antibacterial activity and the redox properties of the extracts

    First muon-neutrino disappearance study with an off-axis beam

    Get PDF
    We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment

    Interaction between antimalarial 2-Aryl-3H-indol-3-one derivatives and human serum albumin

    No full text
    Binding of drugs to plasma proteins, such as albumin, is a major factor which determines their pharmacokinetics and pharmacological effects. Therefore, the interactions between human serum albumin (HSA) and four antimalarial compounds selected in the 2-aryl-3H-indol-3-one series have been investigated using UV-visible, fluorescence and circular dichroism (CD) spectroscopies. Compounds produced a static quenching of the intrinsic fluorescence of HSA. The thermodynamic parameters have shown that the binding reaction is endothermic for three compounds while exothermic for the 2-phenyl-3H-indol-3-one, 3. The interaction is entropically driven with predominant hydrophobic forces with binding affinities of the order of 104 M-1. The highest binding constant is observed for 3 (K-lambda=280nm = 4.53 x 10(4) M-1) which is also the less active compound against Plasmodium falciparum. Synchronous fluorescence gave qualitative information on the conformational changes of HSA while quantitative data were obtained with CD. Displacement experiments with site markers indicated that drugs bind to HSA at site I (subdomain IIA). In addition, the apparent binding constant and the binding site number were calculated in the presence of different ions

    Behavior of N-oxide derivatives in atmospheric pressure ionization mass spectrometry

    No full text
    RATIONALE Indolone-N-oxide derivatives possess interesting biological properties. The analysis of these compounds using mass spectrometry (MS) may lead to interference or under-estimation due to the tendency of the N-oxides to lose oxygen. All the previous works focused only on the temperature of the heated parts (vaporizer and ion-transfer tube) of the mass spectrometer without investigating other parameters. This work is extended to the investigation of other parameters. METHODS The behavior of N-oxides during atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) has been investigated using MSn ion trap mass spectrometry. Different parameters were investigated to clarify the factors implicated in the deoxygenation process. The investigated parameters were vaporizer temperature (APCI), ion-transfer tube temperature, solvent type, and the flow rates of the sheath gas, auxiliary gas, sweep gas and mobile phase. RESULTS The deoxygenation increased when the vaporizer temperature increased. The extent of the 'thermally' induced deoxygenation was inversely proportional to the ion-transfer tube temperature and auxiliary gas flow rate and in direct proportion to the mobile phase flow rate. Deoxygenation was not detected under MS/MS fragmentation and hence it is a non-collision-induced dissociation. N-Oxides have the tendency to form abundant 'non-classical' dimers under ESI, which fragment via dehydration rather than giving their corresponding monomer. CONCLUSIONS Deoxygenation is not solely a 'classical' thermal process but it is a thermal process that is solvent-mediated in the source. Deoxygenation was maximal with an APCI source while dimerization was predominant with an ESI source. Therefore, attention should be paid to these molecular changes in the mass spectrometer as well as to the choice of the ionization mode for N-oxides

    LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells

    No full text
    Observations of fluorescent cyanine dye behavior under illumination at 500 nm lead to a novel concept in cell biology allowing the development of a new live cell assay called LUCS, for Light-Up Cell System, measuring homeostasis in live cells. Optimization of the LUCS process resulted in a standardized, straightforward and high throughput assay with applications in toxicity assessment. The mechanisms of the LUCS process were investigated. Electron Paramagnetic Resonance experiments showed that the singlet oxygen and hydroxyl radical are involved downstream of the light effect, presumably leading to deleterious oxidative stress that massively opens access of the dye to its intracellular target. Reversible modulation of LUCS by both verapamil and proton availability indicated that plasma membrane proton/cation antiporters, possibly of the MATE drug efflux transport family, are involved. A mechanistic model is presented. Our data show that intracellular oxidation can be controlled by tuning light energy, opening applications in regulatory purposes, anti-oxidant research, chemotherapy efficacy and dynamic phototherapy strategies

    Antileishmanial compounds isolated from Psidium guajava L. using a metabolomic approach

    No full text
    With an estimated annual incidence of one million cases, leishmaniasis is one of the top five vector-borne diseases. Currently available medical treatments involve side effects, including toxicity, non-specific targeting, and resistance development. Thus, new antileishmanial chemical entities are of the utmost interest to fight against this disease. The aim of this study was to obtain potential antileishmanial natural products from Psidium guajava leaves using a metabolomic workflow. Several crude extracts from P. guajava leaves harvested from different locations in the Lao People's Democratic Republic (Lao PDR) were profiled by liquid chromatography coupled to high-resolution mass spectrometry, and subsequently evaluated for their antileishmanial activities. The putative active compounds were highlighted by multivariate correlation analysis between the antileishmanial response and chromatographic profiles of P. guajava mixtures. The results showed that the pooled apolar fractions from P. guajava were the most active (IC50 = 1.96 +/- 0.47 mu g/mL). Multivariate data analysis of the apolar fractions highlighted a family of triterpenoid compounds, including jacoumaric acid (IC50 = 1.318 +/- 0.59 mu g/mL) and corosolic acid (IC50 = 1.01 +/- 0.06 mu g/mL). Our approach allowed the identification of antileishmanial compounds from the crude extracts in only a small number of steps and can be easily adapted for use in the discovery workflows of several other natural products
    corecore