7 research outputs found

    THE VARIABILITY OF MULTI-DRUG RESISTANCE ABCB1 GENE IN THE ROMA POPULATION FROM CROATIA

    Get PDF
    When overexpressed, a large transmembrane P-glycoprotein, the product of the ABCB1 gene, is a notable impediment to brain-targeted therapies (like antiepileptics) and chemotherapies. Some of the genetic biomarkers with evidence of multi-drug resistance in ABCB1 ― rs1045642, rs1128503, and rs3213619 ― were analyzed in 440 subjects, members of three socio-culturally different Roma (Gypsy) groups of Croatia. Minor allele frequencies (MAFs) of rs1045642 and rs1128503 were the highest in the Balkan Roma (63.6% and 69.4%, respectively) when compared to the Baranja (52.3% and 62.5%) and the Međimurje Roma (48.8% and 54.5%) (p=0.0005 and p=0.0011, respectively). rs3213619 was monomorphic in the Međimurje group, while its MAFs in other two Roma groups were very low (<1.9%). The distribution of five detected haplotypes (four in the Međimurje group) significantly differed between the Roma subpopulations (p<0.0001), just like the frequencies of diplotypes (p=0.0008). At a global scale, the positive relationship between genetic and geographic distances between the 21 investigated populations indicates isolation by spatial distance. However, this is not true for the relationship between Roma and other populations due to their population history. The analyzed ABCB1 loci indicate genetic distinctiveness of the Roma population

    Genetic Variation at Nine Short Tandem Repeat Loci Among Islanders of the Eastern Adriatic Coast of Croatia

    No full text
    We have analyzed the extent of genetic variation at nine autosomal short tandem repeat loci (D3S1358, VWA, FGA, TH01, TPOX, CSF1PO, D5S818, D13S317, D7S820) among six populations from Croatia: five distributed in the islands of the eastern Adriatic coast and one from the mainland. The purpose is to investigate the usefulness of these loci in detecting regional genetic differentiation in the studied populations. Significant heterogeneity among the island and mainland populations is revealed in the distributions of allele frequencies; however, the absolute magnitude of the coefficient of gene differentiation is small but significant. The summary measures of genetic variation, namely, heterozygosity, number of alleles, and allele size variance, do not indicate reduced genetic variation in the island populations compared to the mainland population. In contrast to the two measures of genetic variation, allele size variance and within-locus heterozygosity, the imbalance index ( ) indicates evidence of recent expansion of population sizes in all islands and in the mainland. High mutation rates of the studied loci together with local drift effects are likely explanations for interisland genetic variation and the observed lack of reduced genetic diversity among the island populations

    3000 years of solitude: extreme differentiation in the island isolates of Dalmatia, Croatia

    Get PDF
    Communities with increased shared ancestry represent invaluable tools for genetic studies of complex traits. '1001 Dalmatians' research program collects biomedical information for genetic epidemiological research from multiple small isolated populations ('metapopulation') in the islands of Dalmatia, Croatia. Random samples of 100 individuals from 10 small island settlements (n<2000 inhabitants) were collected in 2002 and 2003. These island communities were carefully chosen to represent a wide range of distinct and well-documented demographic histories. Here, we analysed their genetic make-up using 26 short tandem repeat (STR) markers, at least 5 cM apart. We found a very high level of differentiation between most of these island communities based on Wright's fixation indexes, even within the same island. The model-based clustering algorithm, implemented in STRUCTURE, defined six clusters with very distinct genetic signatures, four of which corresponded to single villages. The extent of background LD, assessed with eight linked markers on Xq13-21, paralleled the extent of differentiation and was also very high in most of the populations under study. For each population, demographic history was characterised and 12 'demographic history' variables were tentatively defined. Following stepwise regression, the demographic history variable that most significantly predicted the extent of LD was the proportion of locally born grandparents. Strong isolation and endogamy are likely to be the main forces maintaining this highly structured overall population

    Runs of Homozygosity in European Populations

    Get PDF
    Estimating individual genome-wide autozygosity is important both in the identification of recessive disease variants via homozygosity mapping and in the investigation of the effects of genome-wide homozygosity on traits of biomedical importance. Approaches have tended to involve either single-point estimates or rather complex multipoint methods of inferring individual autozygosity, all on the basis of limited marker data. Now, with the availability of high-density genome scans, a multipoint, observational method of estimating individual autozygosity is possible. Using data from a 300,000 SNP panel in 2618 individuals from two isolated and two more-cosmopolitan populations of European origin, we explore the potential of estimating individual autozygosity from data on runs of homozygosity (ROHs). Termed Froh, this is defined as the proportion of the autosomal genome in runs of homozygosity above a specified length. Mean Froh distinguishes clearly between subpopulations classified in terms of grandparental endogamy and population size. With the use of good pedigree data for one of the populations (Orkney), Froh was found to correlate strongly with the inbreeding coefficient estimated from pedigrees (r = 0.86). Using pedigrees to identify individuals with no shared maternal and paternal ancestors in five, and probably at least ten, generations, we show that ROHs measuring up to 4 Mb are common in demonstrably outbred individuals. Given the stochastic variation in ROH number, length, and location and the fact that ROHs are important whether ancient or recent in origin, approaches such as this will provide a more useful description of genomic autozygosity than has hitherto been possible

    SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout

    No full text
    Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200?500 lM) compared with other mammals (3?120 lM)1. About 70% of daily urate disposal occurs via the kidneys, and in 5?25% of the human population, impaired renal excretion leads to hyperuricemia2. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7?5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter3, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes

    A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    Get PDF
    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P &lt; 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology
    corecore