14 research outputs found

    Influence of the crack-tip hydride concentration on the fracture toughness of Zircaloy-4

    Get PDF
    International audienceThe influence of a hydrogen concentration gradient at the crack-tip and hydride platelet orientation on the fracture toughness, fracture mode and micromechanisms of a Zircaloy-4 commercial alloy was studied. Fracture toughness was measured on CT specimens and the analysis was performed in terms of J-integral resistance curves at temperatures ranging from 293 to 473 K. Fracture toughness results of specimens containing higher hydrides concentration near the crack-tip region, preferentially orientated in the crack plane, were compared to those obtained from specimens with a homogeneous hydrogen distribution and different platelet orientation; specimens were obtained by charging them in loaded and unloaded condition, respectively. Changes on both macroscopic and microscopic fracture behaviour were observed at temperatures ranging from 293 to 343 K, and the results show the relevance of both hydride concentration and platelet orientation. The existence of a ductile-to-brittle transition is discussed at the light of these new results

    Reproducibility of Pop-Ins in Laboratory Testing ofWelded Joints

    Get PDF
    The pop-in phenomenon, quite common in fracture mechanics tests of welded joints, corresponds to a brittle crack initiation grown from a local brittle zone (LBZ) that is arrested in reaching the higher toughness material that surrounds this LBZ. A methodology to obtain a high percentage of pop-in occurrence in laboratory testing is necessary to study the pop-in significance. Such a method is introduced in this work and includes the consumable combination and welding procedures for the SMAW welding process to generate artificial LBZ. In order to find out the influence of the loading state upon the pop-in phenomenon, laboratory CTOD tests were performed using two specimen configurations: some single edge-notched specimens were loaded on a three-point bending (SE(B)) fixture while others were tested in tensile load (SE(T)). A higher frequency of pop-in occurrence was observed in the SE(B) geometry

    Reproducibility of pop-ins in laboratory testing of welded joints

    Get PDF
    The pop-in phenomenon, quite common in fracture mechanics tests of welded joints, corresponds to a brittle crack initiation grown from a local brittle zone (LBZ) that is arrested in reaching the higher toughness material that surrounds this LBZ. A methodology to obtain a high percentage of pop-in occurrence in laboratory testing is necessary to study the pop-in significance. Such a method is introduced in this work and includes the consumable combination and welding procedures for the SMAW welding process to generate artificial LBZ. In order to find out the influence of the loading state upon the pop-in phenomenon, laboratory CTOD tests were performed using two specimen configurations: some single edge-notched specimens were loaded on a three-point bending (SE(B)) fixture while others were tested in tensile load (SE(T)). A higher frequency of pop-in occurrence was observed in the SE(B) geometry.Facultad de Ingenierí

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Estimation Procedure of J-resistance Curves for Through Wall Cracked Steam Generator Tubes

    Get PDF
    AbstractThe assessment of the structural integrity of steam generator (SG) tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for SG tubes with circumferential through wall cracks (TWCs). The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required
    corecore