25 research outputs found

    Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients

    Get PDF
    Lymphopenia (< 1Giga/L) detected before initiation of chemotherapy is a predictive factor for death in metastatic solid tumors. Combinatorial T cell repertoire (TCR) diversity was investigated and tested either alone or in combination with lymphopenia as a prognostic factor at diagnosis for overall survival (OS) in metastatic breast cancer (MBC) patients. The combinatorial TCR diversity was measured by semi quantitative multi-N-plex PCR on blood samples before the initiation of the first line chemotherapy in a development (n = 66) and validation (n = 67) MBC patient cohorts. A prognostic score, combining lymphocyte count and TCR diversity was evaluated. Univariate and multivariate analyses of prognostic factors for OS were performed in both cohorts. Lymphopenia and severe restriction of TCR diversity called “divpenia” (diversity ≤ 33%) were independently associated with shorter OS. Lympho-divpenia combining lymphopenia and severe divpenia accurately identified patients with poor OS in both cohorts (7.6 and 10.6 vs 24.5 and 22.9 mo). In multivariate analysis including other prognostic clinical factors, lympho-divpenia was found to be an independent prognostic factor in the pooled cohort (p = 0.005) along with lack of HER2 and hormonal receptors expression (p = 0.011) and anemia (p = 0.009). Lympho-divpenia is a novel prognostic factor that will be used to improve quality of MBC patients’ medical care

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Le virus de l’hépatite Delta : Un agent pathogènequi retourne facilement sa veste ?

    No full text
    International audienceLe virus de l'hépatite Delta Un agent pathogène qui retourne facilement sa veste ? Anaïs Vignon, Solène Denolly, Jimena Perez-Vargas, François-Loïc Cosset > Le virus de l'hépatite Delta (VHD) a été découvert il y a 40 ans dans le foie de personnes infectées par le virus de l'hépatite B (VHB, de la famille des Hepadnaviridae). Parmi les 250 millions de personnes chroniquement infectées par VHB, 15 à 20 millions sont coinfectées par VHD [1]. La surinfection par VHD aggrave l'hépatite déjà causée par VHB, et augmente le risque de développer cirrhose et hépatocarcinome [2]. Du fait de son association avec VHB, VHD est connu en tant que virus « satellite » de VHB, ce qui signifie qu'il en est dépendant (Figure 1) [3]. La particule virale de VHD est formée d'un complexe ribonucléoprotéique constitué du génome viral à ARN associé aux deux formes structurelles de la protéine codée par VHD, S-HDAg et L-HDAg, et repose sur les glycoprotéines de surface de VHB pour l'assemblage des virions, leur enveloppement et leur transmission cellulaire (Figure 1A). Ainsi, pour que VHD puisse former sa particule virale et se disséminer, VHB doit être présent dans la même cellule. Lorsque VHB est absent, VHD reste capable de se répliquer et reste plusieurs semaines dans la cellule, mais il est incapable de se disséminer (Figure 1B) [2]. Cependant, l'idée que VHB est l'unique virus « assistant » utilisé par VHD a récemment été remise en cause. En effet, le génome et les protéines de VHD ont été détectés dans les glandes salivaires de patients atteints du syndrome de Sjögren (une maladie auto-immune systémique), alors que ni les séquences génomiques de VHB ni des anticorp

    DEVEA: an interactive shiny application for Differential Expression analysis, data Visualization and Enrichment Analysis of transcriptomics data

    No full text
    International audienceWe are at a time of considerable growth in the use and development of transcriptomics studies and subsequent in silico analysis. RNA sequencing is one of the most widely used approaches, now integrated in many studies. The processing of these data may typically require a noteworthy number of steps, statistical knowledge, and coding skills which is not accessible to all scientists. Despite the undeniable development of software applications over the years to address this concern, it is still possible to improve. Here we present DEVEA, an R shiny application tool developed to perform differential expression analysis, data visualization and enrichment pathway analysis mainly from transcriptomics data, but also from simpler gene lists with or without statistical values. Its intuitive and easy-to-manipulate interface facilitates gene expression exploration through numerous interactive figures and tables, statistical comparisons of expression profile levels between groups and further meta-analysis such as enrichment analysis, without bioinformatics expertise. DEVEA performs a thorough analysis from multiple and flexible input data representing distinct analysis stages. From them, it produces dynamic graphs and tables, to explore the expression levels and statistical differential expression analysis results. Moreover, it generates a comprehensive pathway analysis to extend biological insights. Finally, a complete and customizable HTML report can be extracted for further result exploration outside the application. DEVEA is accessible at https://shiny.imib.es/devea/ and the source code is available on our GitHub repository https://github.com/MiriamRiquelmeP/DEVEA

    Complexes between linoleate and native or aggregated β-lactoglobulin: Interaction parameters and in vitro cytotoxic effect.

    Get PDF
    peer-reviewedIron is essential for human health, but it sometimes causes an unpleasant taste, rusty colour and a decrease in the stability of food products. Previously, we found that ethanol-treated yeast (ETY) cells could remove iron from wine and juice, and reduce the fishy aftertaste induced by iron in wine–seafood pairings. However, the mechanism of iron sorption by ETY cells is undefined; thus, there is no indicator that can be used to estimate the iron sorption capacity of these cells. In this study, we showed that cell wall components are not mainly associated with iron sorption by investigating ETY cells with the cell wall removed. Moreover, plasma membrane permeability was correlated with the iron sorbing capacity of the cells. Microscopic analysis showed that iron accumulated within ETY cells. Proteinase-treated ETY cells had no iron sorbing capacity. On the basis of these results, we conclude that intracellular proteins are involved in iron sorption by ETY cells.S. Le Maux is currently supported by a Teagasc Walsh Fellowship and the Department of Agriculture, Fisheries and Food (FIRM project 08/RD/TMFRC/650). We also acknowledge funding from IRCSET-Ulysses Travel Grant
    corecore