1,836 research outputs found

    Vortex nucleation as a case study of symmetry breaking in quantum systems

    Full text link
    Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many branches of physics. In particular, they describe with excellent accuracy trapped Bose-Einstein condensates. A generic, but difficult question concerns the relation between the symmetry properties of the true many-body state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex nucleation in a rotating Bose-Einstein condensate. A slow sweep of the rotation frequency changes the state of the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a paradigm example of symmetry breaking in - or change of the order parameter of - quantum many-body systems in the course of adiabatic evolution.Comment: Minor change

    INGA 3D - creative transfer of competence in 3D footwear CAD to VET professionals

    Get PDF
    INGA 3D project - Creative Transfer of Competence in 3D Footwear CAD to VET Professionals aims to transfer and extend innovative software solutions and 3D technologies for Footwear Computer Aided Design. The project brings together universities, research and training centres, adult education providers and IT companies from Romania, Spain, Portugal, and UK. The project products introduce innovative solutions for e-learning in order to test and to validate new teaching methodologies and approaches suitable for vocational training. The INGA 3D training content, its supportive guide as well as the online learning platform was designed, developed, tested and evaluated in line with the best practices identified by partners in their institutions, countries and elsewhere in Europe. INGA 3D project contributes to developing skills and competencies of VET teachers, trainers, tutors, in order to face the future challenges raised by the necessity of adding to the current curricula in VET institutions ICT skill sets that will enable their graduates to work with highly specialized footwear CAD technologies

    Multi-robot grasp planning for sequential assembly operations

    Get PDF
    This paper addresses the problem of finding robot configurations to grasp assembly parts during a sequence of collaborative assembly operations. We formulate the search for such configurations as a constraint satisfaction problem (CSP).Collision constraints in an operation and transfer constraints between operations determine the sets of feasible robot configurations. We show that solving the connected constraint graph with off-the-shelf CSP algorithms can quickly become infeasible even fora few sequential assembly operations. We present an algorithm which, through the assumption of feasible regrasps, divides the CSP into independent smaller problems that can be solved exponentially faster. The algorithm then uses local search techniques to improve this solution by removing a gradually increasing number of regrasps from the plan. The algorithm enables the user to stop the planner anytime and use the current best plan if the cost of removing regrasps from the plan exceeds the cost of executing those regrasps. We present simulation experiments to compare our algorithm’s performance toa naive algorithm which directly solves the connected constraint graph. We also present a physical robot system which uses the output of our planner to grasp and bring parts together in assembly configurations

    Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Get PDF
    This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The Problem of Signal and Symbol Integration: A Study of Cooperative Mobile Autonomous Agent Behaviors

    Get PDF
    This paper explores and reasons about the interplay between symbolic and continuous representations. We first provide some historical perspective on signal and symbol integration as viewed by the Artificial Intelligence (AI), Robotics and Computer Vision communities. The domain of autonomous robotic agents residing in dynamically changing environments anchors well different aspects of this integration and allows us to look at the problem in its entirety. Models of reasoning, sensing and control actions of such agents determine three different dimensions for discretization of the agent-world behavioral state space. The design and modeling of robotic agents, where these three aspects have to be closely tied together, provide a good experimental platform for addressing the signal-to-symbol transformation problem. We present some experimental results from the domain of cooperating mobile agents involved in tasks of navigation and manipulation

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    Feeding behavior of the ctenophore Thalassocalyce inconstans : revision of anatomy of the order Thalassocalycida

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Marine Biology 156 (2009): 1049-1056, doi:10.1007/s00227-009-1149-6.Behavioral observations using a remotely operated vehicle (ROV) in the Gulf of California in March, 2003, provided insights into the vertical distribution, feeding and anatomy of the rare and delicate ctenophore Thalassocalyce inconstans. Additional archived ROV video records from the Monterey Bay Aquarium Research Institute of 288 sightings of T. inconstans and 2,437 individual observations of euphausiids in the Gulf of California and Monterey Canyon between 1989 and 2005 were examined to determine ctenophore and euphausiid prey depth distributions with respect to temperature and dissolved oxygen concentration [dO]. In the Gulf of California most ctenophores (96.9%) were above 350 m, the top of the oxygen minimum layer. In Monterey Canyon the ctenophores were more widely distributed throughout the water column, including the hypoxic zone, to depths as great as 3,500 m. Computer-aided behavioral analysis of two video records of the capture of euphausiids by T. inconstans showed that the ctenophore contracted its bell almost instantly (0.5 s), transforming its flattened, hemispherical resting shape into a closed bi-lobed globe in which seawater and prey were engulfed. Euphausiids entrapped within the globe displayed a previously undescribed escape response for krill (‘probing behavior’), in which they hovered and gently probed the inner surfaces of the globe with antennae without stimulating further contraction by the ctenophore. Such rapid bell contraction could be effected only by a peripheral sphincter muscle even though the presence of circumferential ring musculature was unknown for the Phylum Ctenophora. Thereafter, several live T. inconstans were collected by hand off Barbados and microscopic observations confirmed that assumption.Supported by the David and Lucile Packard Foundation and NOAA Grant #NA06OAR4600091

    Targeted p120-Catenin Ablation Disrupts Dental Enamel Development

    Get PDF
    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows
    corecore