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Abstract. This paper explores and reasons about the interplay between 
symbolic and continuous representations. We first provide some histor- 
ical perspective on the signal and symbol integration as viewed by the 
Artificial Intelligence (AI), Robotics and Computer Vision communities. 
The domain of autonomous robotic agents residing in the dynamically 
changing environments anchors well different aspects of this integration 
and allows us to look at the problem in its entirety. Models of reasoning, 
sensing and control actions of such agents determine three different di- 
mensions for discretization of the agent-world behavioral state space. The 
design and modeling of robotic agents, where these three aspects have 
to be closely tied together, provide a good experimental platform for 
addressing the signal-tesymbol-to-signal transformation problem. We 
present some experimental results from the domain of cooperating mo- 
bide agents involved in tasks of navigation and manipulation. 

1 Introduction 

To motivate the main topic of this paper, we begin with the assumption tha t  
agents live, behave and carry out certain tasks in a physical and dynamically 
changing environment. The issue we want t o  reason about here is one of repre- 
sentation and modeling of autonomous agents. We wish t o  argue tha t  one needs 
a mixture or hybrid representation of signals and symbols. The question tha t  
remains, however, is what constitutes the right mixture. 

Signal and symbol integration and transformation is an old but difficult prob- 
lem. It comes about because the world surrounding us is a mixture of continuous 
space time functions with discontinuities. Recognition of these discontinuities in 
the world leads t o  representations of different states of the world, which in turn 
place demands on the agents behavioral strategies. Similarly, agent's (biological 
or artificial) closed loop interactions with the world/environment can be mod- 
eled as a continuous process, where as switching between different behaviors is 
naturally discrete. Furthermore, the tasks tha t  are either externally given t o  
the agents or internally self-imposed prespecify and, hence, discretize an other- 



wise continuous behavior. Thus, we have three sources for discretization of the 
agent-world behavioral space: 

1. Natural space-time discontinuities of the world. 
2. The model of agent-world dynamics during execution of a given task. 
3. The task. 

Different subdisciplines dealing with the design and modeling of intelligent 
autonomous systems have addressed the problem described above differently. In 
the past, most Computer Vision focused on signal-to-symbol transformation, 
often called "pixels-to-predicates" as summarized in [Pen86]. The approach was 
to partition the signal into something "meaningful," in the geometric and photo- 
metric sense. Thus edges, lines, corners, regions of different shapes, and eventu- 
ally three-dimensional objects and their shapes were recovered. Symbols served 
mainly as a data reduction mechanism. 

From the early days of Artificial Intelligence, the importance of symbolic rep- 
resentations was continually emphasized by the founders of A1 [Min63, McC68, 
NSS631 and their disciples. Unfortunately, the following was missing from this 
line of research: 

1. Explicit acknowledgment that the transformation from signal to symbols 
results in the loss of information. 

2. Self-correction and updating mechanisms of the obtained symbolic informa- 
tion. 

3. Explicit models of the dynamic interaction between the agent and its world. 

Concurrent with efforts at signal-to-symbol transformation, a symbol-to-signal 
endeavor was progressing in the Computer Vision community in the context 
of so-called top-down, knowledge-driven analysis of visual scenes [Win70]. The 
symbol/label represented the object of inquiry. This representation implied spe- 
cific "procedures" that should be applied to the data in order to extract the 
expected features determined by a particular domain of visual scenes. A priori 
known symbolic information guided the selection of lower level matching meth- 
ods. Detected symbolic primitives were then further used for reasoning about 
the spatial relationships among them in order to infer some higher level sym- 
bolic information. The commitment to the use of such a priori information 
eliminated the possibility to go back to the signal for resegmentation, or relabel- 
ing, depending on the higher-level reasoning triggered by some contradictions or 
inconsistencies. 

Another instance where symbol-to-signal transformation occurs is related to 
the task-specific aspects of an agent. Various task specification languages were 
proposed, where, in the case of robotic applications, the symbolic representa- 
tion of actions and goals was typically translated into continuous sensorimo- 
tor processes. These in turn specified particular control strategies for the avail- 
able actuators and data acquisition and processing strategies for sensors [LP82, 
Lyo93, Bro93]. The aspects of programming and specifying the agents' tasks 



were extensively investigated in more general task domains in AI, but the sym- 
bols rarely carried the information needed for detailed motion planning of the 
robot [Ni192, Fir92, Sch92, Kae90, Ark871. 

In the mid 80's another development in the signal-to-symbol-to-signal debate 
was originated by Brooks [Bro86, Bro92] who, motivated by insect behaviors, 
challenged the prevalent view in A1 of the necessity of symbolic representation 
as a precondition for "intelligent" behavior. He and his followers argued for 
the behavioral approach as a basis for constructing more complex autonomous 
"intelligent" behaviors. This brings again to the forefront the following questions: 

Do intelligent systems need symbols? If so, what are they? How many 
symbols do they need? Are symbols innate or learned? Are they just ad 
hoc definitions or can they be derived in some systematic way, depending 
in task, contett and environment? 

In this paper, we shall outline our recent ideas and understanding of this 
problem of signal-to-symbol-to-signal transformation in the context of the de- 
sign and control of autonomous intelligent agents involved in cooperation. We 
shall begin with the definition of what we mean by symbol and what it implies 
for the design of autonomous systems. We shall then present the currently avail- 
able mathematical models, which can guide the selection of symbols and finally 
provide some examples from the domain of cooperative mobile agents engaged 
in navigation and manipulation. 

2 Problem Definition 

2.1 What is a symbol? 

Since a symbol will be some abstraction of a signal, let us, just for the pur- 
pose of setting the notation, refresh the standard notation used in the theory of 
dynamical systems (without committing ourselves to any particular system at  
this time). The state equations of a general continuous time-invariant dynamic 
system can be written as follows: 

where the first set of equations corresponds to a set of state equations, with 
initial conditions specified, x ( t )  is the time-varying state vector, and u(t) is the 
input control vector. The second set of equations corresponds to  a set of output 
or measurement equations where z ( t )  is an output or measurement vector. Linear 
time-invariant systems with the following form are most frequently encountered 
and analyzed: 



where A, B ,  C are real constant matrices. Also commonly encountered are affine 
nonlinear systems characterized as: 

In the case of autonomous agents one is interested not only in modeling their be- 
havior but also controlling them in order to achieve desired objectives. From this 
perspective [Bro88] one can divide control actions into two categories, namely 
open-loop control: 

~ ( t )  = f ( x ( t ) )  + g(u( t ) )  
where control vector u is constant over some period of time ignoring the mea- 
surements z and closed-loop control: 

where the control becomes a function k of the observed measurements in the 
current state of the system. The application of different control laws would then 
correspond to the achievement of different objectives of the system, which in 
turn would be related to the task. 

Our definition of a symbol has two different flavors. The first is a descript ive  
one, where a symbol represents a particular measurement vector z. The second is 
a procedural one, denoting a set of strategies for extracting the measurements h,  
open-loop control strategies g or feedback control laws k to be applied. Within 
this setting the measurement vector, measurement function, and both open-loop 
and closed-loop control laws are dependent on the task, while the function f is 
related to the current model of the system. This may also change, however, in 
case the task constrains the number of degrees of freedom available. The mea- 
surement strategies together with the control strategies form the behaviors. The 
data/measurements come from either the environment via the perceptual appa- 
ratus of the agent or from its memory. The control and measurement strategies 
are encoded in terms of commands-symbols which invoke particular perception 
and action processes. 

2.2 W h y  do we need symbols? 

The need for symbols is partially motivated by the definition of the symbol in 
the previous section, where a symbol provides an abstraction of the workings of 
the low-level data acquisition and control strategies. The additional need and 
benefit of introducing a symbol is the "meaningful" task-related reduction and 
categorization of the sensory data, which can be further used for: 

1. Abstraction and generalization. 
2. Communication. 
3. Memory-storage. 
4. Reasoning. 



The signal-to-symbol problem. We view this transformation as finding an equiv- 
alence class. In other words, it is a mapping of signal values into a sets of sym- 
bols. This implies data reduction (which is desirable) but also loss of information 
(which is undesirable). Hence, the question is a matter of determining the opti- 
mal granularity, or the number of descriptors/symbols, necessary for maximum 
data reduction and minimum loss of information. 

The symbol-to-signal problem. As indicated above there are two cases: when the 
symbol is a command to invoke a behavior and when the symbol represents a 
measurement (parameter) vector, which can be supplied to a particular strategy. 
The transformation of symbol to signal is encoded in the semantics of the symbol, 
which is intimately related to the signal-tesymbol transformation capabilities 
of an agent. 

2.3 How many  symbols? 

Given the need for symbols, the next question is "How many symbols are needed?" 
We approach this problem less philosophically from the point of view of robotics 
and autonomous systems. Our agents are characterized by the number of degrees 
of freedom (represented by the generalized coordinates) they possess given their 
sensory, mobility and manipulation capabilities. They live and interact with a 
physical environment obeying the laws of Newton's mechanics. The geometric 
and physical characteristics (i.e., both kinematic and dynamic models) of an 
agent are modeled only once. However, depending on the tasks and the types of 
constraints provided by the environment they are subject to change. This process 
of imposing constraints on the dynamics of the agent-environment interaction 
generates the first discretization of the behavioral space which otherwise can 
be considered a continuous space of general motion of the agent-environment 
system. This results in employing different degrees of freedom for the given 
tasklstrategy. For example the constraints imposed by the task and the environ- 
ment in case of manipulation depend on the geometric properties of the objects 
being manipulated, therefore changing the number of degrees of freedom of the 
system (e.g., inserting a pin through two planes sliding with respect to each other 
reduces the number of degrees of freedom). Even more so for certain manipula- 
tion tasks, where the number of kinematic linkages can change (e.g., inserting a 
pin into a hole creates a new linkage with one rotational and one translational 
degree of freedom). 

We postulate that for robotic agents the dynamic models of all their degrees 
of freedom are a priori given with a procedural capability to impose constraints 
based on either sensory information during interaction with the environment or 
coming from the task. Hence, symbols depend on the task. 

2.4 Symbols and t h e  task 

We will elaborate on these issues in greater detail, centering our discussion about 
selection of symbols around different tasks. We shall consider two different cat- 



egories of tasks, navigation and manipulation and provide a more detailed de- 
scription of signal-symbol-signal transformation process in section 4. 

Navigation tasks Navigation tasks involve perception of free space, places, ob- 
jects, other agents and their spatial relationships. The task of navigation typi- 
cally consists of two stages, first finding a path to the desired location and then 
finding a control law which would follow the path. If the potential field based 
approach [Kha86] to navigation is used, the stage of finding a path and following 
it can be merged into one stage and the desired control law computed as a gra- 
dient of a given potential function. Hence the task of the agent can be described 
by two discrete symbols, one representing the particular potential function rep- 
resenting the environment and the other representing the desired destination. 
This assertion holds in the case of static environments, where the global infor- 
mation about the environment is, a priori, available. In the case when the global 
information is not available and the robotic agent has to rely on local sensing 
capabilities, we consider the potential function with some generic form which is 
conveniently parameterized by the sensed local properties of the environment. 
Some ideas along these lines have been proposed by [Kodgs]. 

This again brings up the question of how many symbols are sufficient. The 
answer entirely depends on the complexity of the environment in which the agent 
resides. There are two different types of information which need to be extracted 
from the environment for successful navigation: goals or landmarks to be detected 
and obstacles to be avoided. Goals and landmarks play a dual role. In the case 
of perfect position information, the goals can be simply specified in some global 
coordinate system. However, in order to achieve reliable position information, 
landmarks (or other a pn'ori known features) are often used for localization. If 
the task is given externally to the agent or is self-imposed, the granularity of the 
prescribed path and thereby the richness of the symbolic vocabulary depends on 
the complexity of the environment. 

Manipulation tasks Manipulation tasks, as in navigation, involve perception of 
free space, places, objects, other agents and their spatial relationship. However, 
the details about the space, place and objects obtained from perception need to 
be much finer than for navigation tasks. For example, for a grasping task, the size 
of the object and identification of graspable places is important. While during the 
task of manipulating an object one can divide the behavioral space into three 
steps (approach or move to the object, grasp, and manipulate), this division 
clearly does not imply only three symbols for control. The reason is that the 
approach and grasping very much depend on the specific manipulation subtask, 
which in turn depends on the geometric properties of the object. For example, 
the approach and grasp will be different if the manipulation task is only to lift 
the object and transport it to another place than if the task is to mate the object 
with another object [Lev95]. In other words, the ultimate purpose or function of 
the task and the complexity of the environment dictates the number of different 
control and sensing strategies, i.e., symbols. Finally, it should be self-evident that 



the interplay between non-contact observations and contact perception during 
the execution of these tasks is much tighter than during navigation. 

2.5 Distr ibuted tasks 

For general tasks the level and the type of symbolic information needed becomes 
more explicit when the tasks involve cooperation and coexistence of multiple 
agents. Both navigation and manipulation tasks may be simple instances of 
such tasks. For example when the agents have to march together while keeping 
in certain formation or have to grasp and carry a large object, while navigating 
in cluttered environments. In order to accomplish these cooperative tasks the 
agents need to share common goals and have the capabilities of either sensing 
the necessary information or communicating to each other beliefs about the state 
of the tasklenvironment. Within this general setting one can trivially state that 
cooperation implies communication. Communication between two agents can, 
more specifically, take place through: 

1. The environment. 
2. Contact sensors (being in touch). 
3. Non-contact observations (e.g. visual, ultrasound, infrared sensing). 
4. A communication channel. 

In the first three modes of cooperation, the agents do not need additional sym- 
bols since they are already part of their individual control and sensing strategies. 
In the fourth case however an additional symbol expressing an action of commu- 
nication (sending and receiving a message) needs to be established. Distributed 
cooperative tasks bring out various interesting issues regarding tradeoffs between 
communication (in the sense of establishing a communication channel) and sens- 
ing. A more formal treatment of this subject can be found in [DJR93, BS951. 

3 Mathematical Models 

The choice of descriptive symbols determining the state of the system and the 
model of the interaction with the environment is determined by the physical 
characteristics of the systemlagent. Modeling of these aspect has been studied 
extensively in the theory of dynamic systems and control theory. In the following 
paragraph we will give a brief overview of such modeling principles. 

We assume that our agents can be modeled as multiple degree of freedom 
(DOE') mechanistic systems that interact with the physical world that obeys 
Newton's law of physics. We also assume that our agents are equipped with 
contact force sensors, position sensors and non-contact vision and ultrasound 
sensors. 



3.1 Dynamic model of the agent 

Under these assumptions, we follow the Lagrangian formulation of dynamics 
[BH95, Cra891 for multiple degree of freedom systems. The formulation of equa- 
tions of motions is built around the basic principle of virtual work, which states 
that the work done by all forces is equal to zero: 

where Fi is an external force corresponding to the generalized coordinate qi. 
Lagrangian L(q, q) in the previous formulation is: 

where T(q, q) is the overall kinetic energy of the system and U(q) is potential 
energy, both expressed in generalized coordinates system (go, 91, . . . , q,), where n 
is the number of degrees of freedom of the system. The dynamic equations are 
then: 

F(9) = M(9)q + C(9,9) + G(9) (9) 
where M(q) is inertia matrix, C(q, q) is the matrix of Coriolis and centrifugal 
effects, vector G(q) denotes gravity terms and F is the generalized force vector. 
These equations determine what work the agent must exert in order to carry out 
a motion under the conditions determined by the inertia of the agent body, Cori- 
olis forces and gravitational forces. In case some external constraints imposed 
by interaction with the world/environment and/or by the task are present, they 
are captured by the Lagrangian coefficients A weighted by the matrix A(q). The 
equations then become: 

Similarly, the constraints of various types of interaction can be incorporated into 
this equation. In the case of a more complicated system, such as mobile manipu- 
lators, first the dynamic equation for the manipulators and mobile platform are 
established individually and then the mutual effects of manipulator and mobile 
platform are added as extra terms into the equations (e.g., inertia terms caused 
by platform rotation are added as additional forces to the dynamic equation of 
the manipulator) ~ a m 9 4 ] .  

The Lagrangian framework provides a powerful modeling tool for mechanical 
systems where the geometric and physical properties of the system are well 
understood and easily describable. However, difficulties arise once again when 
it comes to modeling the constraints provided by the environment, especially 
when they have to be extracted by sensors. These issues have been extensively 
studied in the area of manipulation, where the geometric and physical properties 
of objects to be manipulated provide additional constraints [Mas82, LP821. The 
models as described so far do not explicitly use the information extracted from 
sensory data, in a different form other than the information of a current state 
of the system q ,  which is assumed to be available at each instant of time. An 



example of a different type of modeling, where the sensed information about 
the dynamically changing environment is directly part of dynamic equations is 
outlined in the following paragraph. 

3.2 Dynamic model of perception-action cycle 

The idea of incorporating the model of the environment into the dynamic model 
of the agent is very appealing and has been extensively addressed by several 
neuroscientists looking at problems related to motor control [Schgl]. The gen- 
eral ideas regarding models of action-perception patterns come from a series of 
experiments for control of posture in the presence and absence of visual stimuli, 
time-to-contact and various tracking, grasping and catching behaviors. 

In his extensive studies of dynamic action-perception patterns [Schgl], Schoner 
looked at the problem of control of posture, and demonstrated that the visual 
information stabilizes posture in the visual world. Schoner proposed a model of 
coupled oscillators, where the agent's intrinsic dynamics is modeled by second 
order linear system with an eigenfrequency wo and the visual appearance of the 
environment is modeled by a environment function e(x, t). The behavior of the 
postural control system can be described in simplest mathematical form as: 

where <t is Gaussian white noise, Q is the strength of the noise and e(x,t) 
represents the expansion rate of the target in retinal coordinates. For sinusoidally 
moving surround e(x,t) the solution to the postural response is a harmonic 
with the same frequency as the visual motion. The system can be studied by 
transforming Equation (11) into polar coordinates and looking at the relative 
phase of the two components. These two systems are naturally coupled and the 
system can be described in terms of relative phase 9 dynamics by the following 
equation: 

8, = A +  sin(@) + fit (12) 

where A and B are constants representing, relating the eigenfrequency wo, driv- 
ing frequency of the stimulus wd. For more details see [DSGG94]. As shown, this 
equation is nonlinear and the coefficients A and B are measures of how much 
the two oscillators are phase locked, corresponding to how much the agent's be- 
havior is in harmony with the visual stimulus that reflects the environment. It 
should be obvious that the nature of Equation (12) will be different depending 
on the environmental function e(x, t),  which can again give rise to the variety 
of symbols. In the previous example, the function e(x, t) was a periodic function 
expressed in the coordinate system of the observer. Not only is there more infor- 
mation contained in the optical flow [Koe86] which could be subjected to similar 
analysis, but one can also employ different sensing modalities for investigating 
stability properties of action-perception couplings. 

In a slightly different setting, formal modeling of action-perception systems 
has been extensively studied in the visual servoing literature, see [Has931 for an 
overview. 



4 Task Description Language 

Various mathematical models outlined in the previous section provided us with 
some insights into the problem of what a symbol is an abstraction of. We recog- 
nized two inherently different categories of symbols: one representing the state 
vector of the mechanical system or the environment and the other one represent- 
ing the procedural aspect of the interaction of the agent with the environment. 
This determines the set of symbols which are necessary for a given physical 
agent, residing in particular environment, engaged in particular tasks. 

A set of signals/symbols defines all the capabilities of the agent. These com- 
prise a set of elementary control strategies for available actuators and a set of 
perceptual strategies. Determining the set of elementary control strategies is de- 
termined by the agents "physique," while the set of perceptual strategies is more 
task dependent. While carrying out the tasks, there is typically a large number 
of processes/strategies activated in parallel, interacting with each other and the 
environment. It is very important to be able to understand and characterize 
these interactions in a general fashion in order to develop modular and easily 
extendable systems which can be employed for a variety of tasks. 

In order to facilitate the symbol to signal transformation, as well as propose 
some design guidelines for characterizing robot behaviors, which depend on the 
task, we propose a language for specifying tasks, where tasks are characterized 
as networks of processes. This representation was originally proposed in [Lyo93]. 
However, instead of adopting the semantics of basic schemas in terms of port 
automata, we propose to model the elementary strategies in terms of Finite 
State Machines (FSM's). This representation is very intuitive and straightfor- 
ward, providing a clear abstraction for a variety of already existing control and 
perceptual strategies. Moreover, the representation is further amenable to for- 
mal analysis. We are able to synthesize a discrete event controller, which serves 
as monitor and run-time scheduler for the task. For details of this procedure 
see [KoS95]. 

For modeling purposes each elementary strategy or computation is repre- 
sented as a process1 and has a FSM model associated with it. The transitions 
between the states of the FSM model are modeled by events, clearly capturing 
initiation, termination, interruption or change of global variables (settings) of 
the elementary strategy. The global variables (or more specifically predicates 
on them) play a general role in our framework, expressing the goals the robot 
should achieve, maintain or prevent from happening. The set of final states of 
elementary strategies is partitioned into a set of successful and unsuccessful final 
states. Communication between two processes running in parallel is modeled via 
shared events. If the two processes share an event then a communication link 
between them is established. 

Elementary processes are combined together by a set of composition opera- 
tors. The operators (common to almost any process model) capture the tempo- 
ral and structural dependencies between the processes. As we mentioned earlier, 

' The word process and strategy will be used interchangeably. 



since the types of behaviors which need to be invoked depend on the task to be 
accomplished, we adopt the notion of the task representation as a network of 
processes. Processes can be composed in a sequential fashion (R ; S), where S 
starts after R terminates, in a concurrent fashion (R 11 S), where R and S run in 
parallel, in a conditional fashion (R < v > : S(v)), where S starts after R termi- 
nates successfully computing v, which is then used to initialize process S, and in 
a disabling fashion (R # S), which is similar to parallel composition except that if 
one of the processes terminates the other process is terminated as well. Two addi- 
tional composition operators expressing repetitive behavior are synchronous re- 
current composition (R :; S), defined recursively as R :; S = R : ( S  ; (R :; S)), 
and asynchronous recurrent composition (R < v > :: S), defined recursively as 
R :; S = R : ( S  11 (R :: S)). 

We shall demonstrate some of these ideas in the tasks of both individual 
agent navigation and cooperative multiple agent navigation in the presence of 
obstacles. 

4.1 Applications a n d  results 

The task of navigation for one or two mobile bases requires a basic control strat- 
egy for achieving a goal in an environment cluttered with obstacles, sensing 
capabilities for obstacle detection, communication capabilities between the two 
robots, and a strategy for achieving an arbitrary heading. For the time being 
we assume that the desired goal location is given in a global coordinate system 
relative to the starting point of the robot and that the reading from the position 
encoders corresponds to a correct position of the robot in the world coordi- 
nate system. The navigational capabilities are implemented using potential field 
based control, where the control law for reaching a desired location is derived 
as a gradient of a given potential function with minimum at the goal configura- 
tion. This formulation follows nicely from Lagrangian formulation (equation (9)) 
where control of the mechanical system is based on the selection of the force F as 
a command vector. This is the basic idea behind the potential field methods for 
task planning and control pioneered by [Kha86]. In order to achieve the desired 
control objective in a given environment the force has to capture the aspects of 
the environment necessary for achieving the control objective. One way to look 
at this problem is from the point of view of optimization [Kod92], where one rep- 
resents the environment in terms of some cost function which attains a value at  
each point in the configuration space and has a global minimum at the desired 
target location. The vector field of this cost function then corresponds to the 
force field in which the mechanical system resides. Applying at each point the 
particular force vector then leads the system to the desired location. For the task 
of navigation in the examples presented here we will not use the full dynamical 
model of the mobile base, but assume a simple kinematic model of a omnidirec- 
tional mobile robot. The configuration of the base is denoted by X = (z, y) and 
the goal location Xg = (xg, yg) is represented by an attractive potential field: 



where kp is a constant gain factor. In order to achieve the desired goal we need 
to exert a force, which is proportional to the negative gradient of the given 
potential function F = - v (Ua ( X ) ) .  The encountered obstacles are represented 
by a hyperbolic repulsive potential function: 

U r ( X )  = 7 (g!q - &I7 if v(X) 5 vo 
otherwise 

where coefficient y > 2, q is a distance function to the obstacle, ~0 is the ob- 
stacle's influence range and k, is a constant gain factor. Instead of using the 
traditional gradient field we adopt the vortex field [MOSl] of the above function 
representing the field rotating around the obstacle: 

The desired velocity xd = (id, id) at each instance of time is derived from the 
artificial potential field holonomic path planner as: 

or alternatively using the vortex field method as: 

This basic control strategy is parameterized by the environment, where the de- 
sired goal location determines the shape of potential function U, and the obsta- 
cles detected along the way are captured by the function Ur . Parameters of these 
functions are provided by perceptual processes. This control strategy will later 
be referred to by the symbol GoTo. Once initiated, the control law is applied until 
the desired location is reached. The strategy can fail in a number of predictable 
ways, such as when the goal is in the location of the obstacle or some mechanical 
failure of the robot occurs. 

The sensing strategy for detecting obstacles in our system is based on in- 
verse perspective mapping [MBLBSl]. The obstacles are approximated by an 
ellipse and the correspondences between the obstacles are established in consec- 
utive frames [Ko895]. This perceptual routine provides the necessary parameters 
for the GoTo strategy, by updating the potential function Ur.  We refer to this 
perceptual strategy, in the next example, by the symbol Detect. 

The control strategy for two mobile robots marching in formation, denoted 
March, is similar to the GoTo strategy, with an additional parameter of the dis- 
tance between the two robots and a rule for generating the commands to the 
individual bases. The elementary strategy for reaching the desired heading is 
denoted by GoToHeading . 



In this example the task is for two mobile bases A and B to go individually to a 
predetermined location while avoiding obstacles, wait for each other, align, and 
then go to another predetermined location, marching in a sideby-side forma- 
tion, while avoiding obstacles. This task can be expressed in a task specification 
language in the following manner: 

( (GoTo~(Goa11)  # DetectA) # (GoToB(Goalz) # DetectB)) : 

  align^ (Heading) # AlignB (Heading)) : 

( (Marcha(Goa1~)  # DetectA) # (MarchB(Goa13) # Detectg)) 

Disabling composition is used because the overall task requires cooperation so 
in the case one of the basic strategies fails the others terminate as well. If two 
strategies are invoked in a parallel or disabling manner and they share certain 
events, a communication link between them is established. This not only allows 
the Detect strategy to update the parameters of the GoTo strategy, but also 
allows the two agents to share the information about the obstacles between 
them while they are marching in side-by-side formation (see Figure 1). 

Fig. 1. The agents are first told to individually go to a predetermined location while 
avoiding obstacles and wait for each other (left). They then march together in a 
side-by-side formation toward a desired goal (right). Notice that while they are march- 
ing together they "agreen to avoid the obstacle from the same side in spite of the fact 
that it would be more advantageous for one of the agents to navigate to the left of 
the obstacle. The sensitivity region around the obstacle, which triggers the avoidance 
maneuver is proportional to the distance between the agents. 

Another example demonstrates a more global navigation task, where the 
agent is told to go to a desired location via route specified in terms of places which 
need to be visited along the way. Navigation between two consecutive places is 
achieved by visual servoing on that particular place. The vision component of 
the strategy denoted by symbol Track provides the desired heading direction to 
the potential field navigation function CoTo. In order to initialize the tracking 



routine, the target is first localized via perceptual recognition strategy Look. The 
overall task of passing through the door, heading towards down the hallway and 
the heading towards another door (see Figure 2) can be specified as follows: 

Fig.2. The task of the agent is to go through the doorway on the right, down the 
corridor and continue to the doorway on the left. Navigation between consecutive 
places done by visual servoing on the particular features which characterize the place. 

The examples outlined above demonstrate that, for navigational tasks, an 
agent uses a set of elementary control and perceptual strategies. These strate- 
gies together with their parameters constitute a set of necessary symbols. The 
strategies can then be composed based on the task to be accomplished and 
parameterized based on the environment. The task specification language for- 
malizes this composition and guarantees run-time scheduling and monitoring of 
the task. 

5 Conclusion 

Symbols do not come for granted, but their meaning is deeply embedded in mod- 
eling the low-level interactions of the agent with the environment. A thorough 
understanding of these aspects provides us with insights into the low-level work- 
ings of the system, understand failures and guarantee success, all in the presence 
of uncertain and noisy information. For elementary tasks, which can be achieved 
by a unique composition of perceptual and control strategies, agents can be mod- 
eled and described purely in terms of differential equations. However, the need 
for symbols is inevitable if one wants to build and model agents involved in a 



variety of tasks and environments. Symbols not only provide nice abstractions 
for low-level strategies, but also allow us to move one level up the modeling 
hierarchy and observe the properties of the systems and their interactions be- 
tween each other and their environment at a more macroscopic level. Symbolic 
representation mediates reasoning about the sequential and repetitive nature of 
various tasks and allows specification of interactions and communications be- 
tween multiple agents in distributed systems. The need for symbols is not the 
only message we are trying to deliver here. Studying systems which sense and 
interact with real-world environments and engage in a variety of tasks provides 
an excellent platform for understanding the fine line between the task-related 
aspects of modeling and the innate elementary sensory and motion capabilities 
of the agents. 
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