13,326 research outputs found

    Dynamics and evaporation of defects in Mott-insulating clusters of boson pairs

    Full text link
    Repulsively bound pairs of particles in a lattice governed by the Bose-Hubbard model can form stable incompressible clusters of dimers corresponding to finite-size n=2 Mott insulators. Here we study the dynamics of hole defects in such clusters corresponding to unpaired particles which can resonantly tunnel out of the cluster into the lattice vacuum. Due to bosonic statistics, the unpaired particles have different effective mass inside and outside the cluster, and "evaporation" of hole defects from the cluster boundaries is possible only when their quasi-momenta are within a certain transmission range. We show that quasi-thermalization of hole defects occurs in the presence of catalyzing particle defects which thereby purify the Mott insulating clusters. We study the dynamics of one-dimensional system using analytical techniques and numerically exact t-DMRG simulations. We derive an effective strong-interaction model that enables simulations of the system dynamics for much longer times. We also discuss a more general case of two bosonic species which reduces to the fermionic Hubbard model in the strong interaction limit.Comment: 12 pages, 10 figures, minor update

    Area law for fixed points of rapidly mixing dissipative quantum systems

    Get PDF
    We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure, or the system is frustration free.Comment: 17 pages, 1 figure. Final versio

    Should neurologists diagnose and manage functional neurologic disorders? It is complicated

    Get PDF
    Whereas only neurologists can "rule in" functional neurologic disorders (FNDs)-using physical signs and semiologic features-their role in follow-up care remains debated. We outlined the arguments for and against a neurologist's primary role in both assessing and managing FNDs. Favorable arguments include the following: (1) FND presents neurologically, and thus, only neurologists can ascertain the etiology of new neurologic deficits appearing on follow-up, and (2) neurologic encounters facilitate acceptance of diagnosis and enhance treatment engagement. Counter arguments include the following: (1) FND is a Diagnostic and Statistical Manual of Mental Disorders, 5th Edition codified psychiatric disorder with largely psychiatric treatments, and (2) neurologists can reassess patients if new neurologic symptoms develop without playing a primary follow-up role. Although more research is needed to clarify optimal approaches, neurologic expertise could be leveraged for diagnostic and coordinating roles if the pool of neurologists, psychiatrists, psychotherapists, physical and occupational therapists, and other allied clinicians trained in the interdisciplinary care of FNDs is substantially increased

    Toward a possible trauma subtype of functional neurological disorder: impact on symptom severity and physical health

    Get PDF
    BackgroundAs a group, individuals with functional neurological disorder (FND) report an approximately 3-fold increase in adverse life experiences (ALEs) compared to healthy controls. In patients with FND, studies have identified a positive correlation between symptom severity and the magnitude of ALEs. While not all individuals with FND report ALEs, such findings raise the possibility of a trauma-subtype of FND.ObjectiveThis study investigated if patients with FND, with or without probable post-traumatic stress disorder (PTSD) and/or significant childhood maltreatment, differed in their symptom severity and physical health.Materials and methodsSeventy-eight patients with FND were recruited (functional seizures, n = 34; functional movement disorder, n = 56). Participants completed self-report measures of symptom severity [Somatoform Dissociation Questionniare-20 (SDQ-20), Screening for Somatoform Disorders: Conversion Disorder subscale (SOMS:CD), Patient Health Questionniare-15 (PHQ-15)], physical health [Short Form Health Survey-36 (SF36-physical health)], childhood maltreatment [Childhood Trauma Questionnaire (CTQ)], and PTSD [PTSD Checklist-5 (PCL-5)]; a psychometric battery of other common predisposing vulnerabilities was also completed. To adjust for multiple comparisons, a Bonferroni correction was applied to all univariate analyses.ResultsPatients with FND and probable PTSD (n = 33) vs. those without probable PTSD (n = 43) had statistically significant increased scores on all symptom severity measures – as well as decreased physical health scores. In secondary post-hoc regression analyses, these findings remained significant adjusting for age, sex, race, college education, and: pathological dissociation; alexithymia; attachment styles; personality characteristics; resilience scores; functional seizures subtype; or moderate-to-severe childhood abuse and neglect scores; SOMS:CD and SDQ-20 findings also held adjusting for depression and anxiety scores. In a separate set of analyses, patients with FND and moderate-to-severe childhood abuse (n = 46) vs. those without moderate-to-severe childhood abuse (n = 32) showed statistically significant increased SDQ-20 and PHQ-15 scores; in post-hoc regressions, these findings held adjusting for demographic and other variables. Stratification by childhood neglect did not relate to symptom severity or physical health scores.ConclusionThis study provides support for a possible trauma-subtype of FND. Future research should investigate the neurobiological and treatment relevance of a FND trauma-subtype, as well as continuing to delineate clinical characteristics and mechanisms in individuals with FND that lack a history of ALEs

    Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film

    Get PDF
    Different anodic voltages and methods were adopted to produce porous anodic alumina films (PAAF) in an aqueous solution of oxalic acid. Carbon tube growth by chemical vapor deposition (CVD) in the films was used to copy the internal pore structure and was recorded by transmission electron microscopy (TEM) photos. Atomic force microscope (AFM) was employed to obtain the topography of the barrier layer of the corresponding films. When the anodic voltage was 40 V and the two-step method adopted, the barrier layer of the film had domains with highly ordered hexagonal cell distribution, and the corresponding pores were straight. When the anodic voltage increased to 60 V, the barrier layer showed random cell distribution with an obvious difference in cell size and form, and the corresponding pores exhibited multi-branch features. When the anodic voltage increased further to 110 V, the barrier layer also showed a random cell distribution. Additionally, smaller protrusions connected to bigger cells were found, which can be correlated to the formation of branches with smaller diameters. Most of the branches of carbon tubes grown in the film anodized at 110 V have a saw-tooth like feature. X-Ray diffraction analysis shows that all the anodic films are amorphous, regardless of the anodic voltage. However, unoxidized aluminum particles in the film anodized at 110 V was observed by TEM

    Nuclear spirals as feeding channels to the Supermassive Black Hole: the case of the galaxy NGC 6951

    Get PDF
    We report the discovery of gas streaming motions along nuclear spiral arms towards the LINER nucleus of the galaxy NGC 6951. The observations, obtained using the GMOS integral field spectrograph on the Gemini North telescope, yielded maps of the flux distributions and gas kinematics in the Halpha, [NII]6584 and [SII]6717,31 emission lines of the inner 7x5 arcsec^2 of the galaxy. This region includes a circumnuclear star-forming ring with radius 500pc, a nuclear spiral inside the ring and the LINER nucleus. The kinematics of the ionized gas is dominated by rotation, but subtraction of a kinematic model of a rotating exponential disk reveals deviations from circular rotation within the nuclear ring which can be attributed to (1) streaming motions along the nuclear spiral arms and (2) a bipolar outflow which seems to be associated to a nuclear jet. On the basis of the observed streaming velocities and geometry of the spiral arms we estimate a mass inflow rate of ionized gas of 3x10^(-4) Msun/yr, which is of the order of the accretion rate necessary to power the LINER nucleus of NGC 6951. Similar streaming motions towards the nucleus of another galaxy with LINER nucleus -- NGC 1097 -- have been reported by our group in a previous paper. Taken together, these results support a scenario in which nuclear spirals are channels through which matter is transferred from galactic scales to the nuclear region to feed the supermassive black hole.Comment: 25 pages, 6 eps figures, accepted for publication in Ap

    Relationship between stream velocity & depth and snail size distribution & density of the balcones elimia, elimia comalensis (pilsbry, 1890) (gastropoda: pleuroceridae) in comal springs, texas

    Get PDF
    Pleurocerid snails are important components of aquatic ecosystems and the majority of species are threatened or endangered. This study describes aspects of the life-history of Elimia comalensis, specifically population density in relationship to water velocity and depth, and seasonal change. Also examined are spatial segregation of different E. comalensis age groups and the relationship of snail size (proxy for age) to flow, depth, and seasonal change. The study was carried out in the lotic portion of spring run 3, Comal Springs, New Braunfels, Texas, by quadrat sampling at 10 m intervals from the spring head to Landa Lake in Fall, Winter, and Spring 2005-2006. The length of snails was strongly influenced by physical characteristics of the stream with stream depth, water velocity, and distance from the spring head accounting for -43% of the individual variability for shell length (

    The ALMA Early Science View of FUor/EXor Objects - V. Continuum Disc Masses and Sizes

    Full text link
    Low-mass stars build a significant fraction of their total mass during short outbursts of enhanced accretion known as FUor and EXor outbursts. FUor objects are characterized by a sudden brightening of ∼5 mag at visible wavelengths within 1 yr and remain bright for decades. EXor objects have lower amplitude outbursts on shorter time-scales. Here we discuss a 1.3 mm Atacama Large Millimeter/submillimeter Array (ALMA) mini-survey of eight outbursting sources (three FUors, four EXors, and the borderline object V1647 Ori) in the Orion Molecular Cloud. While previous papers in this series discuss the remarkable molecular outflows observed in the three FUor objects and V1647 Ori, here we focus on the continuum data and the differences and similarities between the FUor and EXor populations. We find that FUor discs are significantly more massive (∼80–600 MJup) than the EXor objects (∼0.5–40 MJup). We also report that the EXor sources lack the prominent outflows seen in the FUor population. Even though our sample is small, the large differences in disc masses and outflow activity suggest that the two types of objects represent different evolutionary stages. The FUor sources seem to be rather compact (Rc \u3c 20–40 au) and to have a smaller characteristic radius for a given disc mass when compared to T Tauri stars. V1118 Ori, the only known close binary system in our sample, is shown to host a disc around each one of the stellar components. The disc around HBC 494 is asymmetric, hinting at a structure in the outer disc or the presence of a second disc

    Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries

    Get PDF
    Electricity systems are becoming increasingly exposed to weather. The need for high-quality meteorological forecasts for managing risk across all timescales has therefore never been greater. This paper seeks to extend the uptake of meteorological data in the power systems modelling community to include probabilistic meteorological forecasts at sub-seasonal lead-times. Such forecasts are growing in skill and are receiving considerable attention in power system risk management and energy trading. Despite this interest, these forecasts are rarely evaluated in power system terms and technical barriers frequently prohibit use by non-meteorological specialists. This paper therefore presents data produced through a new EU climate services program Subseasonal-to-seasonal forecasting for Energy (S2S4E). The data corresponds to a suite of well-documented, easy-to-use, self-consistent daily- and nationally aggregated time-series for wind power, solar power and electricity demand across 28 European countries. The data is accessible from http://dx.doi.org/10.17864/1947.275, (Gonzalez et al., 2020). The data includes a set of daily ensemble reforecasts from two leading forecast systems spanning 20-years (ECMWF, an 11 member ensemble, with twice weekly starts for 1996-2016, totalling 21,210 forecasts) and 11 years (NCEP, a 12 member lagged-ensemble, constructed to match the start dates from the ECMWF forecast. from 1999-2010, totalling 4608 forecasts). The reforecasts containing multiple plausible realisations of daily-weather and power data for up to 6 weeks in the future. To the authors’ knowledge, this is the first time fully calibrated and post-processed daily power system forecast set has been published, and this is the primary purpose of this paper. A brief review of forecast skill in each of the individual primary power system properties and a composite property is presented, focusing on the winter season. The forecast systems contain additional skill over climatological expectation for weekly-average forecasts at extended lead-times, though this skill depends on the nature of the forecast metric considered. This highlights the need for greater collaboration between the energy- and meteorological research communities to develop applications, and it is hoped that publishing these data and tools will support this
    corecore