2,291 research outputs found

    Revisiting the effect of external fields in Axelrod's model of social dynamics

    Get PDF
    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of controversial results. Here we re-examine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one and two-dimensional versions of Axelrod's model indicate that, contrary to previous claims in the literature, the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforces homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state

    Optical doping and damage formation in AIN by Eu implantation

    Get PDF
    AlN films grown on sapphire were implanted with 300 keV Eu ions to fluences from 3×1014 to 1.4×1017 atoms/cm2 in two different geometries: “channeled” along the c-axis and “random” with a 10° angle between the ion beam and the surface normal. A detailed study of implantation damage accumulation is presented. Strong ion channeling effects are observed leading to significantly decreased damage levels for the channeled implantation within the entire fluence range. For random implantation, a buried amorphous layer is formed at the highest fluences. Red Eu-related photoluminescence at room temperature is observed in all samples with highest intensities for low damage samples (low fluence and channeled implantation) after annealing. Implantation damage, once formed, is shown to be stable up to very high temperatures.FCT - POCI/FIS/57550/2004FCT - PTDC/FIS/66262/2006FCT - PTDC/CTM/100756/200

    Effect of Holstein phonons on the electronic properties of graphene

    Full text link
    We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons within the first Born approximation. This leads to a renormalization of the Fermi velocity of one percent. We further compute the optical conductivity of the system at the Dirac point and at finite doping within the Kubo-formula. We argue that the effects due to Holstein phonons are negligible and that the Boltzmann approach which does not include inter-band transition and can thus not treat optical phonons due to their high energy of ℏω0∌0.1−0.2\hbar\omega_0\sim0.1-0.2eV, remains valid.Comment: 13 pages, 4 figure

    Wigner's little group and Berry's phase for massless particles

    Full text link
    The ``little group'' for massless particles (namely, the Lorentz transformations Λ\Lambda that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of Λ\Lambda and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.Comment: 4 pages revte

    Generalized Entanglement as a Natural Framework for Exploring Quantum Chaos

    Get PDF
    We demonstrate that generalized entanglement [Barnum {\em et al.}, Phys. Rev. A {\bf 68}, 032308 (2003)] provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent of a state. The latter, in turn, is related to other signatures of quantum chaos.Comment: clarified and expanded version accepted by Europhys. Let

    Stability of quantum motion and correlation decay

    Full text link
    We derive a simple and general relation between the fidelity of quantum motion, characterizing the stability of quantum dynamics with respect to arbitrary static perturbation of the unitary evolution propagator, and the integrated time auto-correlation function of the generator of perturbation. Surprisingly, this relation predicts the slower decay of fidelity the faster decay of correlations is. In particular, for non-ergodic and non-mixing dynamics, where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale 1/delta^2, where delta is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbar->0, as the two limits delta->0 and hbar->0 do not commute. In addition we also discuss non-trivial dependence on the number of degrees of freedom. All the theoretical results are clearly demonstrated numerically on a celebrated example of a quantized kicked top.Comment: 32 pages, 10 EPS figures and 2 color PS figures. Higher resolution color figures can be obtained from authors; minor changes, to appear in J.Phys.A (March 2002

    Statistics of opinion domains of the majority-vote model on a square lattice

    Full text link
    The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size LL and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2L^2 whereas the size of the largest cluster grows with ln⁥L2\ln L^2. The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model -- Axelrod's model -- we found that these opinion domains are unstable to the effect of a thermal-like noise

    Lorentz transformations that entangle spins and entangle momenta

    Get PDF
    Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entanglement from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins produced together with entanglement of momenta. From the entanglements considered, no sum of entanglements is found to be unchanged.Comment: 5 Pages, 2 Figures, One new paragraph and reference adde

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz−1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures Μλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures Μλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of Μλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    Electronic transport in graphene: A semi-classical approach including midgap states

    Full text link
    Using the semi-classical Boltzmann theory, we calculate the conductivity as function of the carrier density. As usually, we include the scattering from charged impurities, but conclude that the estimated impurity density is too low in order to explain the experimentally observed mobilities. We thus propose an additional scattering mechanism involving midgap states which leads to a similar k-dependence of the relaxation time as charged impurities. The new scattering mechanism can account for the experimental findings such as the sublinear behavior of the conductivity versus gate voltage and the increase of the minimal conductivity for clean samples. We also discuss temperature dependent scattering due to acoustic phonons.Comment: 10 pages, 4 figure
    • 

    corecore