6 research outputs found

    Background Check:A General Technique to Build More Reliable and Versatile Classifiers

    Get PDF

    Analysis of patient domestic activity in recovery from hip or knee replacement surgery: modelling wrist-worn wearable RSSI and accelerometer data in the wild

    Get PDF
    The UK health service sees around 160,000 total hip or knee replacements every year and this number is expected to rise. Expectations of surgical outcome are changing alongside demographic trends, whilst aftercare may be fractured as a result of resource limitation or other factors. Conventional assessments of health outcomes must evolve to keep up with these changing trends. In practice, patients may visit a health care professional to discuss recovery and will provide survey feedback to clinicians using standardised instruments, such as the Oxford Hip & Knee score, in the months following surgery. To aid clinicians in providing accurate assessment of patient recovery a continuous home health care monitoring system would be beneficial. In this paper the authors explore how the SPHERE sensor network can be used to automatically generate measures of recovery from arthroplasty to facilitate continuous monitoring of behaviour, including location, room transitions, movement and activity; in terms of frequency and duration; in a domestic environment. The authors present a case study of data collected from a home equipped with the SPHERE sensor network. Machine learning algorithms are applied to a week of continuous observational data to generate insights into the domestic routine of the occupant. Testing of models shows that location and activity are classified with 86% and 63% precision, respectively

    Toward enhanced clinical decision support for patients undergoing a hip or knee replacement: focus group and interview study with surgeons

    Get PDF
    Background: The current assessment of recovery after total hip or knee replacement is largely based on the measurement of health outcomes through self-report and clinical observations at follow-up appointments in clinical settings. Home activity-based monitoring may improve assessment of recovery by enabling the collection of more holistic information on a continuous basis. Objective: This study aimed to introduce orthopedic surgeons to time-series analyses of patient activity data generated from a platform of sensors deployed in the homes of patients who have undergone primary total hip or knee replacement and understand the potential role of these data in postoperative clinical decision-making. Methods: Orthopedic surgeons and registrars were recruited through a combination of convenience and snowball sampling. Inclusion criteria were a minimum required experience in total joint replacement surgery specific to the hip or knee or familiarity with postoperative recovery assessment. Exclusion criteria included a lack of specific experience in the field. Of the 9 approached participants, 6 (67%) orthopedic surgeons and 3 (33%) registrars took part in either 1 of 3 focus groups or 1 of 2 interviews. Data were collected using an action-based approach in which stimulus materials (mock data visualizations) provided imaginative and creative interactions with the data. The data were analyzed using a thematic analysis approach. Results: Each data visualization was presented sequentially followed by a discussion of key illustrative commentary from participants, ending with a summary of key themes emerging across the focus group and interview data set. Conclusions: The limitations of the evidence are as follows. The data presented are from 1 English hospital. However, all data reflect the views of surgeons following standard national approaches and training. Although convenience sampling was used, participants’ background, skills, and experience were considered heterogeneous. Passively collected home monitoring data offered a real opportunity to more objectively characterize patients’ recovery from surgery. However, orthopedic surgeons highlighted the considerable difficulty in navigating large amounts of complex data within short medical consultations with patients. Orthopedic surgeons thought that a proposed dashboard presenting information and decision support alerts would fit best with existing clinical workflows. From this, the following guidelines for system design were developed: minimize the risk of misinterpreting data, express a level of confidence in the data, support clinicians in developing relevant skills as time-series data are often unfamiliar, and consider the impact of patient engagement with data in the future

    Characterization of low populated peptide helical structures in solution by means of NMR proton conformational shifts

    No full text
    A NOE independent NMR method is proposed to characterize unambiguosly residues involved in low populated isolated peptide helices. The method is based on the comparison of amide and Hα chemical shift changes originated upon the addition of stabilizing or denaturing agents with true helical conformational shifts that have been measured for the first time using an isolated model peptide helix, the one formed by Ac-(Leu-Lys-Lys-Leu)3-NHEt in aqueous solution
    corecore