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Abstract—We introduce a powerful technique to make clas-
sifiers more reliable and versatile. Background Check equips
classifiers with the ability to assess the difference of unlabelled
test data from the training data. In particular, Background Check
gives classifiers the capability to (i) perform cautious classification
with a reject option; (ii) identify outliers; and (iii) better assess
the confidence in their predictions. We derive the method from
first principles and consider four particular relationships between
background and foreground distributions. One of these assumes
an affine relationship with two parameters, and we show how
this bivariate parameter space naturally interpolates between the
above capabilities. We demonstrate the versatility of the approach
by comparing it experimentally with published special-purpose
solutions for outlier detection and confident classification on 41
benchmark datasets. Results show that Background Check can
match and in many cases surpass the performances of specialised
approaches.

I. INTRODUCTION AND MOTIVATION

While making decisions, human experts and machine learn-
ing models might face two difficult scenarios, where even
vast prior knowledge does not allow them to make confident
decisions. The first scenario consists of cases which are
known from experience to be ambiguous. For example, a bank
manager who wants to decide if a loan application should be
accepted, compares the applicant’s supplied information to the
bank’s database, but this might not give a clear prediction of
loan repayment chance. In this situation, the manager could
do a background check (criminal and credit history) before
making a decision. The second scenario happens when new
or unknown cases appear. For example: a scientist analysing
data from an experiment might come across some unusual
values. Further verification could be done to either identify
the new case as an unexpected relevant discovery or dismiss
it as a measuring defect. In both scenarios, a human expert’s
first answer would be ”I don’t know” or ”I am not confident
enough”, but the reasons for this low confidence are different.
The vast majority of machine learning models are not trained
to give such an answer, while the ones that try to do it focus
only on one of these scenarios. We argue that a unified view
is called for, with the different scenarios being special cases.

The key idea of this paper is to equip classifiers with the
ability to assess the difference of test data from the labelled
foreground data on which the classifier was trained. This
ability arises from assumptions about the nature of background

1The first two authors contributed equally to this work.

data based on available knowledge about foreground data
and the task to be performed. Since we use background
information to perform these tasks, our unified technique is
called Background Check (BC). In test data we expect some
instances to be from background, which we consider as an
additional, novel class k+1, even if it may actually be very
heterogeneous and not form a class as such. BC learns to
estimate (k+1)-class probabilities from k-class training data,
where the extra class represents background data. We propose
that the addition of the extra class provides the classifier with
very useful capabilities including the following:

1) perform cautious classification with reject option: The
goal of this task is to build classifiers that can refrain
from producing an output for ambiguous instances, i.e.
instances with posterior probabilities for all classes lower
than a certain threshold. Our approach addresses this
by assuming that foreground and background data have
similar distributions, with the background density playing
a key role in the rejection rate.

2) identify outliers: Here, special techniques are employed,
capable of detecting when a new instance differs from
known classes. If we assume that outliers emerge from
regions where foreground data are less dense than back-
ground data, we are able to reveal whether an instance is
an outlier from its posterior probabilities.

3) better assess the confidence in its predictions: Imagine
a binary classification problem where both classes are
equiprobable and the likelihoods of two samples on class
C1 are p(x1|C1) = 0.9 and p(x2|C1) = 0.1, while for class
C2 both likelihoods are zero. After applying Bayes’ rule,
we get the same posterior probabilities for both examples:
1 for C1 and 0 for C2. Therefore, both samples have the
same predictions. However, the model should be more
confident for sample x1 than for x2, as the likelihood
of the first sample on class C1 is higher. By providing
probabilities for foreground and background data, our
approach gives a solution to this problem.

BC is general in the sense that it works as a wrapper and
hence does not assume any particular model class. One side
effect of our approach is that we are able to extract posterior
probabilities from one-class classifiers, such as the well-known
one-class support vector machine (OCSVM) [1], for which, to
the best of our knowledge, there was no way of doing so.



We organised this paper as follows: Section II explains BC
in detail; in Section III, we present some applications of our
approach and discuss previous works from the literature which
investigated these tasks, while showing how to use BC to
solve them; Section IV describes our experimental analysis,
where we compare BC against methods that were specifically
designed for each task; and Section V discusses the main
findings and concludes. Supplementary material2 is available
containing proofs, algorithms and more detailed results.

II. THE BACKGROUND CHECK METHOD

In this paper any instance x necessarily belongs to either
foreground or background and not to both at the same time.
If it belongs to the foreground, then it belongs to exactly
one of the k ≥ 1 classes. Formally, we represent the class
of x with a single label y ∈ {1, . . . ,k,k+1}, where the values
1, . . . ,k represent the k foreground classes and the value k+1
represents the background. The background class is special as
we have very little or no training data from that class.

To solve any of the tasks listed in the introduction we
will present methods to estimate the (k+1)-class posterior
probability distribution p(Y |X=x), where (X ,Y ) denotes a
randomly drawn (i.i.d.) test instance with known features
X=x but unknown label Y ∈ {1, . . . ,k+1}. For notational
convenience we denote the events Y=1, . . . , Y=k and Y=k+1
as f1, . . . , fk and b, respectively, and the event Y ∈ {1, . . . ,k}
as f. Also, by a slight abuse of notation we write simply x to
refer to the event X=x. In this new notation, our main task is
to estimate the probabilities p(f1|x), . . . , p(fk|x) and p(b|x).

What makes our task special is the lack or shortage of data
from the background class. In such cases standard methods
fail in the sense that the probability of background will be
zero or very close to zero for any instance. However, standard
methods still allow us to estimate the probabilities for the
foreground classes, conditioned on the assumption that the
instance is from the foreground. That is, we can apply any
multi-class probability estimator algorithm on the training
data from the foreground classes to estimate the probabilities
p(f1|f,x), . . . , p(fk|f,x). We refer to these probabilities as the
class posterior probabilities within foreground.

A. The Familiarity Factor

The class posterior probabilities within foreground do not
provide any information to estimate the foreground and back-
ground probabilities p(f|x) and p(b|x) which are part of our
main estimation task. That is, even for fixed probabilities
within foreground the value of p(f|x) = 1− p(b|x) can still
have any value from 0 to 1. In particular, p(f|x) = 1 and
p(b|x) = 0 refers to absolute certainty that instance x belongs
to the foreground, i.e., it belongs to one of our familiar
classes with sufficient training data. Conversely, p(f|x) = 0
and p(b|x) = 1 refers to complete certainty that the instance
is in an unfamiliar region of the instance space, making us

2Supplementary material with code, mathematical proofs and extended
results is available at https://reframe.github.io/background check/

fully confident that it does not belong to the foreground. This
intuition justifies our following definition.

Definition 1. For any instance x we define its familiarity factor
as r(x) = p(f|x)/p(b|x).

It turns out that knowing the class posterior probabilities
within the foreground together with the familiarity factor is
sufficient to obtain (k+1)-class posterior probabilities.

Proposition 1.

p(b|x) = 1
1+ r(x)

, p(fc|x) =
p(fc|f,x)r(x)

1+ r(x)
for c = 1, . . . ,k

Proof. All proofs can be found in the supplementary material.

Furthermore, the familiarity factor is not only sufficient but
also necessary in the sense that it can be directly obtained
from the (k+1)-class posterior probabilities:

r(x) =
p(f|x)
p(b|x)

=
p(f1|x)+ · · ·+ p(fk|x)

p(b|x)
.

We will next study how to estimate the familiarity factor.
If despite the shortage of background data we have enough

to learn a two-class probability estimator to distinguish be-
tween foreground and background, then we can calculate
the familiarity factor directly from its definition r(x) =
p(f|x)/p(b|x). This also becomes possible if we have a way
to generate background data synthetically. In the following
we consider the case when learning a discriminatory model
is infeasible. First we note that r(x) = p(x, f)/p(x,b) because
p(x, f) = p(f|x)p(x) and p(x,b) = p(b|x)p(x) where p(x) is
the density of test data at x. We refer to p(x, f) and p(x,b) as
foreground and background densities, respectively. Since we
are interested in the ratio of these densities, we care only about
the relative densities, rather than absolute.

Definition 2. We define the relative foreground density qf(x)
and relative background density qb(x) as follows:

qf(x) =
p(x, f)

maxx p(x, f)
, qb(x) =

p(x,b)
maxx p(x, f)

.

Note that both of these densities are taken relative to the
same quantity, which is the maximal foreground density across
the whole instance space. It is now easy to see that the
familiarity factor can be calculated as the ratio of relative
foreground and background densities: r(x) = qf(x)/qb(x).

B. Estimating Relative Foreground/Background Densities

It turns out that relative foreground density estimation is
equivalent to the task of estimating p(x|f), in the sense that
either of these can be directly calculated from the other.

Proposition 2.

qf(x) =
p(x|f)

maxx p(x|f)
, p(x|f) = qf(x)∫

x qf(x)dx
.

Therefore, one can first use any standard density estimation
algorithm and then calculate the relative foreground density.

https://reframe.github.io/background_check/
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Fig. 1. Example of Background Check (BC) assuming the affine background
bias. For details see text and the supplementary material.

Often we tend to know very little about the outliers or novel
classes to emerge. Therefore, we need a strong inductive bias
with regard to the background to obtain qb(x). In particular,
we introduce four background biases in order of increasing
strengths. We hypothesise that for most practical applications
the lack of information about the background forces the use
of one of the two strongest biases.

1) Under the first, least restrictive background bias we
assume that qb is a function of qf , i.e. qb(x) = µ(qf(x)).
This makes sense, as due to lack of information there are
no reasons to assign different background densities to any
two points which have equal foreground density. Under
this background bias the domain knowledge must inform
the choice of function µ : [0,1]→ [0,∞). If the domain
knowledge is insufficient for this, a stronger inductive
bias is required.

2) Under the second, monotonic background bias we assume
that the function µ is either monotonically increasing
or monotonically decreasing. That is, when moving to
a region with higher foreground density the background
density increases, or decreases, respectively. The justifica-
tion of this assumption is that due to lack of information
there are no reasons to have particular points in µ as local
minima or maxima.

3) Under our third, affine background bias we assume that
the function µ has the form µ(z) = az+b. Instead of the
parametrisation with a and b we choose to parametrise by
µ(0) and µ(1), the end-points of the function (see Figure
1). That is, µ(z) = (1− z)µ(0) + zµ(1). If the domain
knowledge is not even sufficient to provide µ(0) and µ(1)
then the strongest bias needs to be considered.

4) Under our fourth and strongest constant background bias
we assume that µ(z) = 0.5. This is a special case of the
affine background bias with µ(0) = µ(1) = 0.5.

Figure 1 shows an example of BC with two normally
distributed foreground classes and assuming the affine back-
ground bias, with µ(0) = 0.1 and µ(1) = 0.5. We can see that
the background is half as dense as the foreground in the dens-
est foreground region. Moreover, the densities of foreground
and background decrease together, but the background density
never becomes less than µ(0) = 0.1, eventually becoming
denser than the foreground. The maximum familiarity r(x)
occurs at µ(1), while the lowest familiarity occurs at µ(0).

In cases where we need strong background biases due to
lack of data about the background we can relax the foreground
density estimation. In particular, we may care more about
estimating which regions have higher and which lower fore-
ground density, but less about what the exact density values
are. The advantage of this situation is that we can use one-
class scoring classifiers: models which assign higher scores
to regions which are inside the foreground distribution and
lower scores to regions outside. All we need to do is to
make sure that we monotonically transform the scores to be
between 0 and 1, to obtain an approximate relative foreground
density. For this there are many possible transformations and
the choice is to be made based on the knowledge about the
scoring classifier and the domain. For example, OCSVM [1] is
expected to output positive values for foreground and negative
values for background data. In this case, a sigmoid function
qf(x) = 1/(1+ exp(s∗− s(x))) can be applied to the outputs
s(x) of the model, with the origin of the sigmoid fixed to s∗,
which is the lowest output obtained from training data. Thus,
instances that are foreground training data now have outputs
in [0.5,1.0] and the lower bound of the output becomes 0.
This meets the requirements for BC and allows us to extract
posterior probabilities from OCSVM.

C. Performing Background Check
Background Check can be performed in two ways, depend-

ing on the task and on the assumed background bias. The
simplest one, which we call discriminative approach (BCD),
is built by uniformly generating artificial background instances
around foreground data and training a binary discriminative
model to separate them. These instances are generated in a
hypercube or a hypersphere [2], such that the background
is half as dense as maxx p(x, f) in every point within some
bounds. This matches our fourth, constant background bias.
During test time we combine the estimates given by the k-
class foreground classifier and the foreground vs background
classifier to obtain (k+1)-class posterior probability estimates.

The second BC method, called familiarity approach (BCF),
is more general and works with all our background biases.
First, we fit a one-class model on foreground data. From the
scores of this model, we obtain qf (using the sigmoid, if the
model is OCSVM). Then, we use one of our background biases
to obtain qb from qf . We can then calculate the familiarity
factor r = qf/qb, from which we extract posterior probabilities
p(b|x) and p(f|x) to obtain the (k+1)-class posterior probabil-
ity estimates. Although BCD is simpler than BCF, the latter
might be more appropriate in high-dimensional spaces, where
generating artificial instances can be expensive [3].

III. APPLICATIONS AND RELATED WORK

In this section we discuss how to use BC to achieve the
capabilities mentioned in the Introduction.

A. Cautious classification
Training a classifier to perform cautious classification can

be very useful in many areas including medical applications
[4], activity recognition [5] and intrusion detection [6].
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Fig. 2. Different regions on the parameter space of the Background Check
assuming the affine background bias. For details see the supplementary
material.

An early contribution to this task was Chow’s rule [7],
following which a classifier rejects an instance x if ∀i, p(y =
i|x)< θ , where θ is the rejection threshold. This rule tends to
reject instances close to the decision boundary, where classes
have lower probabilities. Later works use either the same
threshold for all classes [5], [6] or different thresholds for
each class [8], [9] (which is better-suited for problems with
imbalanced classes). Some papers also investigated threshold
selection in cost-sensitive scenarios [6], [9].

We can mimic this cautious behaviour with BC by assuming
our affine background bias, setting µ(0) = 0 and varying
the value of µ(1) according to the desired rejection rate.
Proposition 3 offers a justification for this choice.

Proposition 3. Given a threshold θ , if µ is the affine
background bias with µ(0) = 0 and µ(1) = θ , then p(f|x)
is a monotonically decreasing function of θ of the form
p(f|x) = 1/(θ +1).

As a result of Proposition 3, when µ(0) = 0, foreground
and background posterior probabilities are independent of the
foreground density. Moreover, higher values of µ(1) lead to
lower constant foreground probabilities and higher constant
background posterior probabilities (as shown in the left col-
umn of Figure 2), resulting in higher rejection rates.

To perform cautious classification with BC, one must simply
set µ(0) = 0 and µ(1) = θ . Then, for every instance x, predict
ŷ = argmaxi p(y = i|x) and reject x if ŷ = k+1.

B. Outlier detection

Outliers are instances that originate from unknown back-
ground regions. Outlier detection has been tackled by many
different types of algorithms [10]–[13]. Among these meth-
ods, density estimators, one-class SVMs and approaches that
generate artificial background data are of particular interest.

A good density estimator is expected to output lower values
for outliers than for foreground data. [3] proposed a one-class
classification approach that aims to improve an initial den-
sity estimator by training a discriminative model to separate
training data from artificial data sampled from the generative
model. If the original density estimator was poorly-fitted, the
discriminative model will improve the combined performance.

[2], [14] proposed a process for building classifiers that
“protect” a target class against outliers and any possible new
classes by generating new artificial instances uniformly around
the target class. This is equivalent to assuming our constant
background bias.

[15] proposed the construction of a multi-class classifier
with outlier detection as an ensemble with one one-class
classifier per class. Because different one-class classifiers
trained on different classes will output values in different
scales, they proposed two ways of normalising these outputs,
called outlier normalisation (O-norm) and target normalisation
(T-norm). The difference between these approaches lies in the
values given to objects that fall in the rejection boundary.

Both O-norm and T-norm are model-dependent. Moreover,
O-norm and T-norm might also result in one class dominating
the others if its scores are distributed with higher variance.
Similarly to their approach, we can build multi-class classifiers
with outlier detection with one BC per class. Since BC always
outputs probabilities p(f|x), regardless of the base model, the
outputs do not need to be normalised in a model-dependent
way, as in [15], while also mitigating the problem of one class
dominating the other ones.

In a general multi-class outlier detection scenario, there are
two ways of applying BC. The first one, represented by the
central plot in Figure 2, assumes the constant background bias
and employs our discriminative approach (BCD). The second
approach, represented by the bottom row in Figure 2, considers
that outliers are denser in regions where foreground data are
less dense and vice versa and uses our familiarity approach
(BCF) by assuming the affine background bias, with µ(1) = 0
and µ(0) > 0. Both BCD and BCF will produce (k+1)-class
posterior probability estimates and predict ŷ = argmaxi p(y =
i|x) for every test instance x, marking x as outlier if ŷ = k+1.

C. Classification with confidence

The benefits of considering the confidence of a classifier’s
predictions have been discussed before in the machine learning
literature [16]–[19]. Most approaches treat a classifier’s out-
puts or class-conditional probability estimates as confidence.
[19] discussed the importance of confidence in weighted vot-
ing schemes in ensemble learning. Their approach associates
a confidence level to the prediction given by each classifier
of the ensemble for a given example. The weights of the
classifiers are trained by minimising a cost function that is
akin to training a maximum margin SVM on the classifiers’
predictions multiplied by their respective confidence values.
After training the weights, the ensemble is pruned, by sorting
the classifiers according to weight and keeping the classifiers
that form the sub-ensemble with maximum training accuracy.

Treating class probability outputs of a classifier as con-
fidence has a drawback. As explained in Section I, due
to the normalisation made by Bayes’ rule, class-conditional
probabilities might not be well-suited for some situations, such
as instances that come from sparse regions of foreground data.
To solve this problem, given any of our background biases,
BC provides us with foreground probabilities p(f|x), which



we name confidence, and (k+1)-class conditional probabilities,
which we call confident probabilities. The chosen background
bias depends on which type of confidence will be evaluated,
that is, confidence can represent instance ambiguity (cautious
classification), unfamiliarity (outlier detection), or both.

In the particular application of ensemble learning proposed
by [19] every classifier of the ensemble is built on a subset of
the training data. Hence, even if no new classes are expected
during deployment, these models should not be overconfident
about instances that come from regions of the feature space
on which they were not trained. We therefore expect that our
confident probabilities should increase the ensemble’s perfor-
mance. Here we want to evaluate each classifier’s confidence
in a general way, thus, for this task we assume our constant
background bias, setting µ(0) = µ(1) = 0.5. Furthermore, we
hypothesise that the average confidence given by BC for the
training data of a classifier is enough to know how important
its predictions should be for the ensemble. Therefore, we set
the weight of a classifier as its average confidence.

IV. EMPIRICAL EVALUATION

The main point of this paper is to present an approach
general enough to be applied to various machine learning tasks
that were previously considered unrelated – or weakly related
– and for which many specialised solutions were pursued, as
discussed in Section III. In this section we will empirically
analyse the usefulness of BC for solving these tasks, except
cautious classification, which we theoretically proved to be
a built-in capability of BC. For all experiments, we chose to
use our familiarity approach (BCF), due to the potentially high
training cost of generating artificial instances for some of the
datasets. Therefore, for simplicity we will refer to the chosen
approach simply as BC for the remainder of this section.

In order to demonstrate the versatility of BC we selected
41 datasets from UCI [20]. Half of them have been used
previously in publications [3], [8], [15], [19] which we cite
and/or compare against. Because of our interest in multiclass
classification problems we selected 20 additional datasets with
more than 3 classes. We preprocessed and standardised all
datasets. Nominal features were transformed into numerical
values. If the number of instances with missing values was
less than 25% of the dataset, we removed those instances.
Otherwise we kept them to avoid discarding too much in-
formation, but substituted the missing values by the mean of
their corresponding feature. Datasets with more than 30 000
instances were reduced to 10% of their original size. Finally
all features were standardised with mean zero and variance
one. More details of the preprocessing can be found in the
supplementary material.

A. Outlier detection

For this application, we chose to compare our method with
the multiclass approach proposed by [15] and discussed in
Section III-B. To compare O-norm and T-norm with BC, we
selected the Naive Parzen density estimator, because it was
one of the overall best methods in their analysis. Following

TABLE I
MEAN ACCURACIES AND RANKING OVER 41 DATASETS IN THE OUTLIER

DETECTION EXPERIMENTS.

BC O-norm T-norm

Ranked 1 19 11 11
Ranked 2 7 11 19
Ranked 2.5 0 4 4
Ranked 3 15 15 7
Mean acc.(rank) 74.32 (1.90) 70.95 (2.14) 72.59 (1.95)

their experimental setup, we selected rejection thresholds such
that a 10% rejection rate was achieved for the training data
of each class. To simulate the emergence of outliers during
test time, we generated artificial instances from a Gaussian
with four times the covariance of test data, totalling 50% of
the number of test instances. Since [15] did not report which
values were used for the bandwidth parameter of the Gaussian
kernel used by Naive Parzen, we selected one value (0.05)
for all experiments. Experiments were run on 20 times 5-fold
cross-validation. For each dataset, we ranked the methods by
their mean accuracies. Table I presents the results measured by
accuracy and ranking order. For full details about the results,
please check the supplementary material.

We note that BC had better average accuracy in most
datasets with 30 or more features. Moreover, O-norm seemed
to perform better on the datasets with the largest number
of samples, while BC performed better on small datasets.
To evaluate the significance of these results we performed
Friedman’s test, which did not reject the null hypothesis. While
O-norm and T-norm are specially designed solutions that need
to be adapted for different density estimators, our method is
general enough to solve the same task without the necessity
of designing specific solutions.

B. Classification with confidence

We show the usefulness of the confident predictions given
by BC by applying our approach to the task of confident
weighted-voting ensembles proposed by [19], as explained
in Section III-C. We ran 20 times 5-fold cross-validation for
each dataset. For each experiment, we trained an ensemble
of 100 classifiers. For binary datasets, each classifier was a
linear SVM, trained on a subset with 75% of the training
data selected by bootstrapping. For multiclass datasets, each
classifier in the ensemble was composed of k(k−1)/2 pairwise
linear SVMs and output the most predicted class among its
pairwise components. The confidence of this prediction was
the minimum output given by the pairwise components trained
on the winning class.

For our approach, for each classifier in the ensemble, we
trained a BC model following the assumptions we proposed in
Section III-C. For the confidence values, we used the confident
probabilities obtained from the BC model. The chosen one-
class model for BC was OCSVM [1], as implemented by
Python’s scikit-learn library [21], keeping the default param-
eter values, except for parameter ν , which was set to 0.1.



TABLE II
MEAN ACCURACY AND LOG-LOSS OVER 41 DATASETS FOR THE

CLASSIFICATION WITH CONFIDENCE EXPERIMENTS. THE RESULTS ARE
SIGNIFICANTLY BETTER AT p < 0.001 ACCORDING TO A WILCOXON
SIGNED RANK-SUM TEST. FULL RESULTS IN THE SUPPLEMENTARY

MATERIAL.

Accuracy Log-loss
method EP-CC BC EP-CC BC

Mean 81.54 82.27 3.42 2.98

Each ensemble outputs a matrix with the weighted votes for
each class and for each instance, from which normalised class-
conditional probabilities were obtained. Table II presents the
final results in terms of mean accuracy and log-loss averaged
for 100 results from the 41 datasets. To verify the statistical
significance of these results, we performed a Wilcoxon signed
rank-sum test per dataset. BC achieved higher accuracy for
32 datasets (26 statistically significant with p < 0.05), while
EP-CC achieved better results for 9 datasets (6 statistically sig-
nificant). Furthermore, BC showed lower log-loss in general,
outperforming EP-CC for a total of 36 datasets (34 statistically
significant). On the other hand, EP-CC had lower log-loss for
6 datasets (2 statistically significant).

V. DISCUSSION AND CONCLUSIONS

Our experimental analysis with a large number of datasets
proved the usefulness of BC as a general technique, capable
of performing different tasks, such as cautious classification,
outlier detection and classification with confidence, for which
only special-purpose methods existed.

We proved theoretically that BC is naturally equipped
with the capability to perform cautious classification. As for
outlier detection, although BC performed better on average
than two specialised model-dependent methods, the difference
was not statistically significant, according to Friedman’s test.
Nevertheless, there is still merit for BC on this task, because
it is a simple general technique that does not depend on the
base model. For the last task, we showed that our confident
probabilities contribute to increasing the ensemble’s accuracy,
while also extracting better probability estimations from it
(as evidenced by the log-loss). Due to the unified solution
provided by BC, these tasks can be solved simultaneously by
the same model, depending on the chosen background bias.

Future works include the investigation of BC under a cost
perspective, and the cost surfaces that will result from the ad-
dition of the background class, and possible new applications
for BC, such as detection of novel classes, where instances
labelled as background can be further background checked in
search of emerging patterns.
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