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Abstract

The UK health service sees around 160,000 total
hip or knee replacements every year and this num-
ber is expected to rise. Expectations of surgical out-
come are changing alongside demographic trends,
whilst aftercare may be fractured as a result of re-
source limitation or other factors. Conventional as-
sessments of health outcomes must evolve to keep
up with these changing trends. In practice, patients
may visit a health care professional to discuss re-
covery and will provide survey feedback to clini-
cians using standardised instruments, such as the
Oxford Hip & Knee score, in the months follow-
ing surgery. To aid clinicians in providing accurate
assessment of patient recovery a continuous home
health care monitoring system would be beneficial.
In this paper the authors explore how the SPHERE
sensor network can be used to automatically gener-
ate measures of recovery from arthroplasty to facil-
itate continuous monitoring of behaviour, including
location, room transitions, movement and activity;
in terms of frequency and duration; in a domes-
tic environment. The authors present a case study
of data collected from a home equipped with the
SPHERE sensor network. Machine learning algo-
rithms are applied to a week of continuous obser-
vational data to generate insights into the domestic
routine of the occupant. Testing of models shows
that location and activity are classified with 86%
and 63% precision, respectively.

1 Introduction
The UK health service sees around 160,000 hip and knee re-
placements every year [National Joint Registry, 2018] within
the National Health Service and this number is expected to
increase. Hence, innovative approaches to evaluating sur-
gical outcomes will be needed to respond to the increasing
burden of joint replacement surgery. Health care interven-
tions, such as surgeries, are only part of a patient’s journey.
Expectations of surgical outcome are changing alongside de-
mographic trends [National Joint Registry Editorial Board,
2017]. Conventional assessments of health outcomes must

evolve to keep up with these changing trends. After joint re-
placement, up to 30% of patients report minimal improve-
ment or their symptoms get worse and not all patients are
satisfied with their outcome [Beswick et al., 2012]. Poor out-
comes include continuing pain, functional limitation and in-
creased health care utilisation. Consequentially, improving
outcomes after joint replacement is a key research priority.

Patients routinely receive a follow-up appointment approx-
imately six weeks following surgery. However, this may not
be with the surgeon, but with a registrar. This may com-
plicate assessments. Various strategies have been proposed
to increase efficiency whilst maintaining quality and patient
acceptability, such as the use of ’virtual clinics’ [Williams,
2014]. These rely on Patient Reported Outcome Measures
(PROMs), such as the Oxford Hip or Oxford Knee Score and
the EQ-5D, a measure of health status. These can assess var-
ious health outcomes including pain, function and aspects of
quality of life, but have sometimes significant limitations. For
example, PROMs may be subjective to a certain extent and
may reflect the patient’s level of pain [Senden et al., 2011;
Stevens-Lapsley et al., 2011].

Previously, research has explored the relationship between
PROMs and objective measures, notably performance-based
tests such as timed walks or sit-to-stand tests [Bolink et al.,
2012]. Such objective measures are administered in con-
trolled, laboratory style settings, and may not reflect levels
of activity in daily life. Multimodal sensor systems present
in domestic settings, such as those used in ambient assisted
living scenarios [Rashidi and Mihailidis, 2013], allow assess-
ment of behaviour and activity in a natural setting. Establish-
ing a relationship between PROMS and multimodal sensor
data permits us to develop effective methods of passive mon-
itoring and recovery after surgery, providing a further data
source that, if used alongside PROMS, may allow for rela-
tively timely intervention in the event of complications, po-
tentially improving patient outcomes.

1.1 Contribution
The contribution of this research is to make an initial evalu-
ation of statistical method, from literature (section 2), which
may provide measurement or classification of mobility infor-
mation including location and room transitions, movement
intensity and distance, and posture & ambulatory activites,
using data gathered in the wild. Techniques detailed in litera-
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ture (section 2) are applied to one week of continuous obser-
vational data recorded within a real residence (section 3.1).

Results of classifier training are presented in section 4,
along with visualisation of measurements and classifications
for location, movement and activity. An evaluation of meth-
ods using real-world data is presented in discussion in section
5, with conclusions in section 6.

A valuable outcome of this initial evaluative research has
been to highlight the future work (section 7) necessary to de-
velop algorithms for long-term measurement and classifica-
tion which can be robust to the challenges presented when
working with data gathered in the wild.

1.2 SPHERE: A sensor platform for health care in
a residential environment

SPHERE is an interdisciplinary research project which aims
to develop sensor technologies capable of supporting a vari-
ety of practical use cases, including healthcare and ambient
assisted living outcomes. An additional goal of SPHERE is
to build systems that are considered acceptable by the public
and which are flexible and powerful enough to function well
in a broad variety of domestic environments [Woznowski et
al., 2015; 2017].

‘Smart home’ systems development has primarily taken
place in laboratory settings[Alam et al., 2012], or, as in the
SPHERE project, in a customised home[Tao et al., 2015]. Re-
search, development and testing of multimodal sensor tech-
nologies was completed in a home owned by the project, the
SPHERE House. In 2017, the SPHERE project began to de-
ploy a multimodal sensor network into dozens of homes in
the South West of England.

The work reported here is part of a set of initial studies
on data generated using the SPHERE sensor network in de-
ployment. In particular, this study is intended to establish the
behaviour of the sensor network and of the associated ana-
lytic infrastructure, including measurements of participant lo-
cation, movement and activity, in a genuine deployment con-
text ‘in the wild’.

2 Related work
Key indicators of relevance to PROMS include movement
patterns (such as room to room transfers), patterns of im-
provement (quality of movement, distance walked, climbing
stairs), activities undertaken (such as cooking or cleaning)
and sleep (e.g. hours sleeping, quality of sleep).

This study focuses on three measurements of participant
domestic behaviour including location, movement and activ-
ity. In this section, the authors provide a brief overview of
research relating to each method employed.

2.1 Indoor localisation
Indoor localisation [Quan et al., 2010; Wang et al., 2014] is
an important area of research for behavioural analysis in res-
idential health care. The ability to predict the location of a
patient not only gives insight into domestic routine and habi-
tation, but allows other information to be physically contextu-
alised. The SPHERE low-energy Bluetooth network provides
a mesh of overlapping or interacting signal strength fields

which provide a pattern of distinct Received Signal Strength
Indicator measures, based on proximity to each receiver in
the network.

As in literature [Quan et al., 2010; Wang et al., 2014],
RSSI has been used to fingerprint locations within a space
by learning the discriminant RSSI vectors from a moving av-
erage [Quan et al., 2010].

2.2 Movement
Measures of movement are often based on either measured
acceleration [Preston et al., 2012; Xiao et al., 2016] or in-
ferred positional change as represented by shift in Received
Signal Strength Indicator (RSSI) [Krumm and Horvitz, 2004;
Gansemer et al., 2010b; 2010a]. Both approaches have ad-
vantages and disadvantages, considering different types of
movement and the location of the accelerometer. A wrist-
worn accelerometer as used in SPHERE may show spikes in
magnitude based on ambulation (e.g. walking or running)
but also for rapid hand / arm movements (e.g. chopping veg-
etables), and acceleration magnitude may not spikes for low
acceleration positional change (e.g. transcending stairs with
aid of a stair lift). RSSI will highlight positional change re-
gardless of acceleration but will not show movement that is
non-positional (e.g. walking or running on a tread mill), and
may over overestimate small movements which block line of
sight to RSSI receivers (e.g. rolling over in bed).

In this work both magnitude and RSSI based movement
calculations are shown for comparison.

2.3 Activity
Activity recognition using wearable and mobile devices has
been a major focus for the recent years [Bao and Intille, 2004;
Kwapisz et al., 2011; Siirtola and Röning, 2012; Ravi et al.,
2005; Janidarmian et al., 2017].

From a device prospective, mobile phones, smart watches
and wrist bands have the dominant source of data, which nor-
mally captures the acceleration signal around the body of the
users. In this paper we also focus on the 3-axes acceleration
data obtained from a wrist band, which is one of the standard
choice in the field.

3 Case study
In this study the authors present initial results and data vi-
sualisations for a single case study participant home of the
SPHERE cohort over the first week of system installation.

The case study presents the authors work in progress in
developing methods of analysis to monitor, visualise and val-
idate key indicators of recovery from surgery, such as hip or
knee arthroplasty. The experiments in this paper focus on ex-
perimental evaluation of methods for measurement of move-
ment within the home.

3.1 Methods
In this section the authors present an overview of methods
used to generate the three classification metrics: in-door lo-
calisation, movement and activity classification.



Data Collection
The case study home has been selected as it represents a sim-
ple use-case for SPHERE technology in the wild. The res-
idence has a single occupant with few rooms and all rooms
located on the same floor. Figure 1 shows a graphical repre-
sentation of the layout of the residence.

Bedroom 1 Livingroom 1

Kitchen 1

Bathroom 1

Hall 1

Exit

Figure 1: Connection between different rooms in the house

The SPHERE system has been installed in the residence
for five months. In this paper the authors focus on analysis of
the first week of installation, so as to give an overview of the
methods used for analysis and visualisation of data.

Figure 2 details the physical architecture of one subsystem
of the SPHERE sensor network, the wrist-worn Bluetooth
Low-Energy (BLE) wearable device. The wrist wearable har-
bours a tri-axial accelerometer and broadcasts over Bluetooth
at 25Hz.

Figure 2: Diagram of wearable Bluetooth LE subsystem of SPHERE

Data collected from a second SPHERE subsystem; the en-
vironmental sensor network; will provide passive infra-red
activation data, of use in validating the predictions made us-
ing the wearable data.

To develop a localisation training set for the home, dur-
ing installation of the SPHERE sensor network, a technician
performs an annotation procedure called a ’technician walk-
around’. The technician carries the wearable device to each
room in the home, annotating the start and end times in each
labelled location. The technician walk-around was repeated
prior to the sensor network being removed from the home.
Figure 3 visualises the technician walk around.

The participant is asked to perform their daily routine in a
fast-forward manner. That is, the participant starts from the
location of the bed, visit corresponding locations according
to their usual routine, while performing simple activities like
“making a cup of tea”. During the experiment, the participant

wears a head mounted camera to record the view, which can
be later annotated for the activities performed.

Figure 3: Visualisation of technician walk around

Ethics: data collection and publication
The data used in this study has been collected as part of the
SPHERE project [Woznowski et al., 2015; 2017]. The par-
ticipant in this case study has provided consent for data to
be recorded within their home. Participation in the SPHERE
project is voluntary and participants are at liberty to exit the
experiment at any time.

Due to the sensitive nature of data collected within a real-
world residential environment, data used in this study is not
being made public alongside this paper. A data set of activity
and location annotated SPHERE sensor data, recorded dur-
ing short scripted experiments in the SPHERE House (The
SPHERE Challenge) [Twomey et al., 2016], is available on-
line.

Classifying location using RSSI fingerprints
RSSI levels between the wrist-worn wearable and each in-
stalled receiver within the home have been recorded. Using
a 3-second sliding window, a vector of RSSI values is con-
structed to represent the position of the participant. For each
second and each gateway, the sum, mean, minimum, maxi-
mum and variance in RSSI are calculated across the second.
Each second in the sliding window was then concatenated to
produce a vector of length n = 75.

A multi-layer perceptron artificial neural network (MLP)
with three hidden layers, 100 nodes per hidden layer, was
trained to classify the location of the wearable based on RSSI
vectors. To train the classifier, the annotations taken during
the technician walk-around activity (figure 3) were used to
label the training and test set of vectors. The set of labelled
vectors were shuffled and split 50/50 between training and
testing sets. The MLP was trained using the ’adam’ [Kingma
and Lei, 2015] algorithm. Results of training and testing are
presented in the section 4.

Location predictions are used to visualise room occupancy
over time and to localise movement metrics, providing a view
on where movement happens within the home and at what
times of day.

In addition, location predictions are used to visualise the
frequency of predicted transition from room to room. Pre-
dicted room transitions are expected to abide by the adjacency
of rooms, as given in the residence layout in figure 1.



Classifying movement intensity
Movement intensity is calculated by the magnitude of accel-
eration (equation 1), as given by the mean tri-axial accelerom-
eter readings from the wrist-worn wearable, over a 1-minute
window. This approach has been successfully demonstrated
in [Xiao et al., 2016]. The wearable device transmits acceler-
ation in x, y and z dimensions at 25Hz.

A =
√
a2x + a2y + a2z (1)

Acceleration magnitude was calculated for each 1-minute
of accelerometer data. For each 1-second window, the stan-
dard deviation of magnitude was calculated. Movement in-
tensity is here defined as the sum of magnitude standard de-
viations (per second) over a given time window.

Movement is also calculated by the Euclidean distance be-
tween consecutive RSSI vectors. Similarly to the method de-
scribed in [Muthukrishnan et al., 2009], an RSSI vector (slid-
ing window) was calculated for each observation window, in
this case 1-minute. For each 1-minute window, the Euclidean
distance between the current and previous window was cal-
culated.

Movement classification is compared to activations of pas-
sive infra-red sensors (PIR) installed in each room of the res-
idence. PIR sensors activate when movement is detected in
a room. As the case study home is a single occupancy res-
idence, PIR activations are anticipated to occur inline with
increased acceleration magnitude.

Classifying activities using RSSI and tri-axial
acceleration
From the fast-forward experiment, three models are obtained
for predicting standing, lay down, and walk with a one-vs-rest
strategy.

As both the RSSI and acceleration are collected at a rela-
tively high frequency and hence are not synchronised to each
other, the sliding window (with 2 sconds length) approach has
been applied on the raw signal to obtain the standard feature
vectors.

Since each activity is only collected for a couple of sec-
onds during the fast-forward experiment, here we strategi-
cally avoid features that require a higher amount of train-
ing data, leaving features only involving calculating the mean
values, median values, and standard deviations for each indi-
vidual acceleration and RSSI, as well as the overall accelera-
tion and RSSI readings on the target wearable device.

Regarding the model, we apply the Logistic regression for
obtaining probabilistic outputs, which can then be corrected
via Beta probability calibration.

With calibrated probabilistic outputs, one can easily visu-
alise the uncertainty with each prediction, as well as calculat-
ing the overall time spent on these activities.

3.2 Data
In this section the authors present a brief overview of the data
generated using methods described in section 3.1.

Location: 379,234 location classifications were made at 1
second intervals. RSSI based movement: 6,375 estimates of

distance travelled were generated at 1-minute intervals. Ac-
celerometer based movement: 6,363 accelerometer magni-
tude observations were calculated, at 1-minute intervals. Ac-
tivity recognition: 302,400 estimates of activity were gener-
ated from RSSI and accelerometer data, at 2-second intervals.

4 Results
In this section the authors present initial results applying lo-
calisation, movement and activity classification algorithms to
the first week of data from the case study home.

4.1 Indoor localisation
Table 1 shows the test set performance of the trained MLP
indoor localisation classifier. Table 4.1 shows the training and
testing split for each class.

Location Train Test

Bedroom 1 37 42
Bathroom 1 30 22
Kitchen 1 30 29
Living Room 1 57 49
Hall 1 37 50

Table 1: Location classifier test-set results

Class Precision Recall f1-score Support

bathroom 1 0.86 0.83 0.84 23
bedroom 1 0.79 0.94 0.86 35
hall 1 0.80 0.83 0.82 48
kitchen 1 1.00 0.91 0.95 32
living room 1 0.88 0.80 0.83 54
avg / total 0.86 0.85 0.85 192

Figure 4 visualises room occupancy in 2-hour windows, as
predicted by the localisation classifier. Figure 5 shows loca-
tion transitions from location to location, within the home.

4.2 Movement intensity and distance
Figure 6 shows movement intensity in 2-hour windows, over
the observed week. Figure 7 shows movement as calculated
by mean euclidean distance between RSSI vectors in each
2-hour window. Figure 8 shows passive infra-red sensor acti-
vations over the same period.

Table 2 shows movement intensity for each day in each
residential location.

Figure 9 shows the intensity of movement calculated by
accelerometer magnitude in each domestic locations, across
the first week of observation.

4.3 Activity Recognition
As we train the corresponding model for each activity with
the one-vs-rest strategy, the results can be simply evaluated as
in table 3. Table 3 shows test set performance of the classifier.
Figures 10, 11 and 12 show activity classifications aligned to
location classifications (figure 4) across the observed week.



Table 2: Movement (magnitude) per day per location. Sub-index indicates the rankings from high to low values.

Day Bathroom Bedroom Hall Kitchen Living room Total

Mon 0.43 0.76 10.35 0.06 8.74 20.35(7)

Tue 0.14 2.47 9.20 1.74 22.43 35.99(3)

Wed 1.78 11.25 1.07 3.68 7.08 24.87(6)

Thu 4.40 10.04 1.13 8.28 9.84 33.69(4)

Fri 1.55 11.26 2.66 5.28 6.66 27.41(5)

Sat 5.12 11.95 4.89 10.33 6.71 39.00(2)

Sun 5.37 21.67 5.98 29.45 27.03 89.50(1)

Total 18.79(5) 69.4(2) 35.28(4) 58.82(3) 88.49(1)
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Figure 4: Location by 2-hour window across week 1
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Figure 5: Location transitions across week 1 comparing non-
overlapping intervals of 1 minute. Outer squares indicate: one-step
adjacency in red and two-steps adjacency in dotted orange.

5 Discussion

Localisation predictions appear accurate on the small sam-
ple set used for training and testing the classifier. Results
of classifier testing (Table 1) show average precision of 86%
and recall 85% over the five classes. However, given the lim-
ited size of the data set, the assumption of independence be-
tween samples in the training and test set does not hold. For
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Figure 6: Movement intensity (magnitude) by 2-hour window
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Figure 7: Movement distance (RSSI) by 2-hour window

Table 3: Activity classifier 3-folds cross validation results

Class Precision Recall f1-score Support

lay down 0.75 0.92 0.83 13
stand 0.61 0.71 0.66 35
walk 0.53 0.47 0.50 36
avg / total 0.63 0.70 0.66 84
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Figure 8: Passive infra-red sensor activation by 2-hour window
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Figure 9: Movement (magnitude) by location across week 1
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Figure 10: Predictions of the activity ‘walk’ in the predicted loca-
tions across one week

that reason, in our current analysis we may expect lower lev-
els of accuracy than estimated. From the location prediction
data across the week (figure 4), a regular routine emerges.
The participant occupies the bedroom from around 22:00 on
most nights, with occupancy transitioning through the hall-
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Figure 11: Predictions of the activity ‘stand’ in the predicted loca-
tions across one week
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Figure 12: Predictions of the activity ‘lay down’ in the predicted
locations across one week

way, bathroom, kitchen and living room between 04:00 and
06:00 on most mornings. The participant leaves the residence
between 06:00 and 08:00 between Tuesday and Friday. The
living room is occupied in the evenings between 16:00 and
22:00, with the longest periods of occupancy on the Monday,
Tuesday and Sunday.

The room transitions (figure 5) show that living room and
kitchen are most frequently moved between. However, the
transition matrix calculated by majority class in each pair-
wise minute causes the hallways to be under represented. Al-
lowing for second order adjacency; essentially allowing for
hops over the hallway; reduces the error.

Movement intensity (figure 6) by accelerometer magnitude
supports the location predictions, showing that movement in-
tensity decreases at 22:00 on most days and remains low until
04:00, a time when the participant is located in the bedroom.
The most intense movement within the home was recorded
on the weekend.

Movement intensity measurements by accelerometer mag-
nitude are supported by the PIR activation (figure 8) data.
With the exception of the installation period, between 08:00
and 12:00 on Monday, when there were SPHERE technicians



in the home, the individual participants’ movement from the
wearable maps well to the movement detected by the PIR sen-
sors.

Movement intensity (accelerometer magnitude) by loca-
tion highlights where activity occurs within the home. Table
2 shows that over the entire week the living room was where
most movement occurred, followed by the bedroom, kitchen,
hallway and finally the bathroom.

Figure 9 shows how movement intensity varied in locations
over time. The visualisation shows low intensity movement
during night time hours, when the participant is located in
the bedroom. More intense movement is detected in both the
kitchen and living room each day in the late afternoon and
evening. The most intense and sustained movement occurred
in the kitchen on Sunday morning.

A comparison of magnitude measurements in figure 6 and
RSSI measurements in figure 7 during sleeping hours high-
lights a potential problem with using RSSI measurement.
RSSI signal change can be by obscuring the wearable. Dur-
ing sleep the RSSI signals can be modified by a participant
changing sleeping position and obscuring the wearable, re-
sulting in a perceived movement in position.

Walking activity, shown in figure 10, appears mostly in the
evening, overlapping with time spent moving in the kitchen
and living room (Figure 6).

Standing activity, shown in figure 11, occurs in the hall,
kitchen and living room and routinely at the beginning and
end of each day, overlapping with time spent in the kitchen
and living room (figure 4).

Laying down, shown in figure 12, indicates sleep during
hours of low activity in the bedroom, as shown in figure 6.

6 Conclusions
The case study has demonstrated that RSSI and tri-axial ac-
celerometer data can be used to measure key indicators of re-
covery from Hip and Knee replacement surgery, such as daily
routine, sleep patterns, location transitions and movement in-
tensity over a short period of time.

RSSI fingerprints collected during the technician walk-
around activity were sufficient (Table 1) to model distinct lo-
cations within the home. However, transitions such as kitchen
to bathroom, which appear in figure 5, are not physically pos-
sible according to the layout of the home in figure 1. The
likely cause is the adjacency of kitchen and bathroom mean-
ing the fingerprints may converge dependent on factors such
as radio-frequency interference.

To improve the classification algorithm and reduce erro-
neous location transitions, a representation of possible tran-
sitions given a prior must be included in the model. This
improvement will be a focus of future work.

Routine of activity and passivity is highlighted in move-
ment estimates, with accelerometer magnitude providing the
clearest view of true movement levels. RSSI tended to over
estimate movement.

Activity classifications, shown in figures 10, 11 and 12,
show a pattern of activity in locations. Laying down occurs
mostly in the bedroom, with standing occurring mostly in the
living room and kitchen, and walking predominantly occur-

ring in the bedroom and living room. The results suggest that
the method of classification has produced meaningful activ-
ity classifications and should provide a basis for an expanded
activity set in future work.

7 Future work
In future work, a longer period of observation will be anal-
ysed using methods identified in this paper. It is anticipated
that with a longer period of observation issues such as con-
cept shift or hardware failure may reduce the effectiveness of
classifiers for periods of time.

Particularly, the method of RSSI fingerprinting used in this
initial case study would not be robust to hardware failure or
removal. In future work it will be necessary to develop a
continuous retraining strategy, such that should a gateway be
unplugged or suffer failure then location classification can re-
cover and learn from the new gateway topology.

SPHERE and HemiSPHERE participants have completed
additional surveys to help with annotation of routine and be-
haviour. In analysing a longer time period, future work will
incorporate feedback from a sleep quality survey, daily di-
aries and Social Rhythm Metric (SRM).

We are currently collecting data from additional partici-
pants and pending to apply the same analysis on the collected
data. We need to consider how our current analysis pipeline
generalises to other house layouts, participants and number
of house occupants.

One possible research direction is about how to validate
the predicted locations when multiple participants are in the
household. In our current analysis it was possible to validate
with the PIR activation.However, we will need to incorporate
different sensors and heuristics to differentiate between the
house occupants.

In our current work activities are limited to walking, stand
and lay down. In future work, these activities are to be ex-
tended to include sitting down, and climbing and descending
stairs. Further activities are facilitated by additional annota-
tion of head mounted camera data recorded during the day in
fast-forward activity.

To further develop a view of domestic routine, data from
smart-meter attached devices such as microwave, toaster, ra-
dio and television will be integrated with participant location
predictions to highlight patterns of user interaction with do-
mestic appliances.

References
[Alam et al., 2012] Muhammad Raisul Alam, Mamun

Bin Ibne Reaz, and Mohd Alauddin Mohd Ali. A
review of smart homes - past, present, and future. IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6):1190–1203, 2012.

[Bao and Intille, 2004] Ling Bao and Stephen S Intille. Ac-
tivity recognition from user-annotated acceleration data. In
International Conference on Pervasive Computing, pages
1–17. Springer, 2004.

[Beswick et al., 2012] Andrew David Beswick, Vikki
Wylde, Rachael Gooberman-Hill, Ashley Blom, and Paul



Dieppe. What proportion of patients report long-term
pain after total hip or knee replacement for osteoarthritis?
a systematic review of prospective studies in unselected
patients. BMJ open, 2(1):e000435, 2012.

[Bolink et al., 2012] SAAN Bolink, SN van Laarhoven,
M Lipperts, IC Heyligers, and B Grimm. Inertial sen-
sor motion analysis of gait, sit–stand transfers and step-up
transfers: differentiating knee patients from healthy con-
trols. Physiological measurement, 33(11):1947, 2012.

[Gansemer et al., 2010a] S Gansemer, S Pueschel, R Frack-
owiak, S Hakobyan, and U Grossmann. Improved RSSI-
based Euclidean distance positioning algorithm for large
and dynamic WLAN environments. 9(1):9, 2010.

[Gansemer et al., 2010b] Sebastian Gansemer, Uwe Gross-
mann, and Syuzanna Hakobyan. RSSI-based Euclidean
Distance algorithm for indoor positioning adapted for the
use in dynamically changing WLAN environments and
multi-level buildings. pages 1–6. IEEE, September 2010.

[Janidarmian et al., 2017] Majid Janidarmian, Atena
Roshan Fekr, Katarzyna Radecka, and Zeljko Zilic. A
comprehensive analysis on wearable acceleration sensors
in human activity recognition. Sensors, 17(3):529, 2017.

[Kingma and Lei, 2015] Diederik P Kingma and Jimmy Lei.
Adam: A Method for Stochastic Optimization. page 15,
2015.

[Krumm and Horvitz, 2004] J. Krumm and E. Horvitz. Lo-
cadio: inferring motion and location from wi-fi signal
strengths. In The First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Ser-
vices, 2004. MOBIQUITOUS 2004., pages 4–13, Aug
2004.

[Kwapisz et al., 2011] Jennifer R Kwapisz, Gary M Weiss,
and Samuel A Moore. Activity recognition using
cell phone accelerometers. ACM SigKDD Explorations
Newsletter, 12(2):74–82, 2011.

[Muthukrishnan et al., 2009] Kavitha Muthukrishnan,
Berend Jan van der Zwaag, and Paul Havinga. Inferring
Motion and Location Using WLAN RSSI. In Richard
Fuller and Xenofon D. Koutsoukos, editors, Mobile Entity
Localization and Tracking in GPS-less Environnments,
volume 5801, pages 163–182. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[National Joint Registry Editorial Board, 2017] National
Joint Registry Editorial Board. National joint registry
14th annual report 2017, 2017.

[National Joint Registry, 2018] National Joint Registry.
Joint replacement statistics, 2018.

[Preston et al., 2012] Timothy Preston, Wendy Baltzer, and
Stewart Trost. Accelerometer validity and placement for
detection of changes in physical activity in dogs under
controlled conditions on a treadmill. Research in Veteri-
nary Science, 93(1):412–416, August 2012.

[Quan et al., 2010] Michael Quan, Eduardo Navarro, and
Benjamin Peuker. Wi-Fi Localization Using RSSI Finger-
printing. page 6, 2010.

[Rashidi and Mihailidis, 2013] Parisa Rashidi and Alex Mi-
hailidis. A survey on ambient-assisted living tools for
older adults. IEEE journal of biomedical and health in-
formatics, 17(3):579–590, 2013.

[Ravi et al., 2005] Nishkam Ravi, Nikhil Dandekar,
Preetham Mysore, and Michael L Littman. Activity
recognition from accelerometer data. In Aaai, volume 5,
pages 1541–1546, 2005.

[Senden et al., 2011] Rachel Senden, Bernd Grimm, Ken-
neth Meijer, Hans Savelberg, and Ide C Heyligers. The
importance to including objective functional outcomes in
the clinical follow up of total knee arthroplasty patients.
The Knee, 18(5):306–311, 2011.
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Fafoutis, et al. A multi-modal sensor infrastructure for
healthcare in a residential environment. In IEEE Int. Conf.
on Communication Workshop (ICCW), 2015.

[Woznowski et al., 2017] Przèmyslaw Woznowski, Alison
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