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Abstract—This paper looks to explore the challenges faced
when producing a set of annotations from videos produced by
a pilot study evaluating 24 participants (12 with Parkinson’s
disease, each accompanied by a healthy volunteer control partic-
ipant) who are free-living in a house embedded with a platform
of sensors. We discuss the outcome measures chosen to annotate
from the videos and the controlled vocabularies formulated for
this task, the tools and processes, how we intend to achieve
standardisation and normalisation of the annotations, and how
to improve quality and re-usability of the annotation dataset.

Index Terms—Parkinson’s disease, outcome measures, annota-
tions

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease in the UK and worldwide [1]. It
is a progressive, disabling disease for which currently there
are no disease-modifying treatments, despite multiple putative
neuroprotective agents having been tested in double-blind
randomised controlled trials [2]. The gold-standard way to
measure disease progression in the clinic and in clinical trials
is by using a clinical rating scale called the Movement Disorders
Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale, or MDS-UPDRS. However, PD fluctuates day-to-
day and hour-by-hour, so quantifying it in the ‘wild’, at home,
is felt to be important by many patients and clinicians.

A home-based sensor system which continuously monitors
symptoms of PD has the potential to personalise medical
treatments, reduce clinic visits in both clinical care and trials,
and better appreciate PD symptom fluctuations which occur
away from clinic.

Of particular interest in clinical trials outcomes are those
symptoms which are present pre-diagnosis/in early disease
and those which gradually worsen over the early years from
diagnosis. Such symptoms include bradykinesia (slowness of
movement), rigidity (stiffness in the muscles), sleep distur-
bances, hypophonia (low/soft voice), constipation.

To improve the accuracy of outcome measures that aim
to quantify progression of these symptoms in a free-living
environment, excellent training data would involve multiple
expert clinicians’ annotation of a participant’s symptoms [3].

Evaluation of ‘free-living’ technology-assisted outcomes in
PD, in other words when a person is in the home or home-like
environment and carrying out unstructured/unscripted activities,
has been done by a number of groups with varying degrees
of validation [4] which include video stream analysis with
annotations, direct clinician observation and participant diaries.
Video use to produce annotations has advantages over diaries
which can have poor temporal resolution and low accuracy [5]
and direct clinician observation that can impair the participant’s
free-living behaviour [6]. Video use in validation attempts of
free-living data was mentioned in 19 papers according to a recent
systematic review [4]. We would like to discuss the challenges of
producing annotations from videos taken in the wild.

A project from the University of Bristol has led to the
development of a platform of sensors that are designed to
allow continuous, relatively inexpensive, unobtrusive sensing
of naturalistic living symptoms and activities [7]. The ‘SPHERE
house’ (SPHERE stands for Sensor Platform for HEalthcare in
a Residential Environment) is a 2-bedroomed terraced property
with a kitchen, 2 reception rooms, bathroom and a small
garden. This setting is embedded with multiple multi-modal
sensors [8]. The sensors include environmental/ambient sensors
which measure temperature, humidity, air pressure, light levels,
presence (passive infra-red), wearable devices (worn on both
wrists) with accelerometers, camera sensors which generate
silhouettes of participants and bounding boxes—that when
linked with the SPHERE wearable, let the system know who
the participant is, appliance use sensors, water flow sensors and
several receivers distributed across the house also obtain the
signal strength from the wearable, which is used to estimate
the location of the participant in the house. The data from all
these sensors, including the wearables, synchronise into the
same database sharing the same timestamps. The sensors are
easily and inexpensively deployable to people’s own homes.

Common (scripted) activities of daily living (ADLs), includ-
ing reaching up to cupboards and pouring a kettle and other
actions such as sit-to-stand, have been annotated offline from
videos taken in a home-like environment by groups within the
SPHERE Project [9].

Additionally, rather than using cameras for post-hoc data



annotation, work has explored approaches to live annotations
centred on a cooking activity in the participants’ home [10].

Another approach to online annotation was explored by Tonkin
et al. [11], whereby participants annotated their own data, during
their own free-living, using a self-annotation app: users could
scan a tag triggering the app to display a confirmation message.
Work by McConville et al. showed participants following a
scripted procedure to automatically annotate their own data [12]
for localisation and activity recognition.

Further work comparing the performance of long-term
activity recognition using accelerometers concluded that it is
more difficult to estimate the performance of these methods in
the wild than in a laboratory environment [13]. This highlights
the need for ground truth to accompany free-living data sets
to improve prediction accuracy in activity recognition.

This paper looks to explore the challenges faced when
producing a set of annotations from videos produced by a pilot
study evaluating 24 participants (12 with PD each accompanied
by a healthy volunteer control participant) who are free-living
in the SPHERE house whilst being sensed by the platform of
sensors described above. The house also has camera sensors
which can capture RGB (red-green-blue) video with which
to produce a source of ground truth (clinician annotations
post-hoc) for the behaviour and symptoms of the participants.
Longer term, the study is looking to produce technology-
assisted outcome measures which could then potentially be
used to measure disease progression in clinical trials of disease-
modifying therapies in PD.

We discuss the outcome measures chosen to annotate from
the videos and the controlled vocabularies formulated for this
task, the tools and processes we intend to use, how we intend to
achieve standardisation and normalisation of the annotations, and
how to improve quality and re-usability of the annotation dataset.

II. METHODOLOGY

We have started data collection for a feasibility and accept-
ability study during which 12 pairs of participants are recruited:
each pair comprises one person with mild to moderate PD and
one healthy volunteer control participant who is likely to be a
spouse, family member or friend of the person with PD. Each
pair will stay and live freely for 5 days in the SPHERE house.

During the 5-day stay, researchers visit twice to conduct
clinical assessments and rating scales, in addition to some
pre-defined scripted activities which focus on kitchen tasks.
Otherwise, the participants are encouraged to live as they would
at home. They stay overnight for a total of 4 nights.

Technology-assisted outcome measures of interest for which
annotations will be generated are shown in table I, along with
their controlled vocabularies.

RGB video data is captured from communal rooms down-
stairs. This data is recorded during the time the researcher is
undertaking clinical assessments of the participants, and while
they are doing scripted activities in the kitchen. Furthermore,
while the participants are free-living alone in the house, the
cameras capture 4 hours of RGB video across the 5 days. The
participants are aware of the times when the RGB will be

TABLE I
CONTROLLED VOCABULARIES FOR ANNOTATIONS

Activity level

Lying down, Sitting, Sit-to-stand, Stand-to-sit, Standing still, Standing with
activity (e.g., washing dishes), Light walking (<4 km/h), Moderate physical
activity

Activities of daily living

Watching TV, Reading, Food preparation, Cleaning, Talking on phone, Eating,
Playing a game, Talking to someone, Using computer/tablet/other device

Global spontaneity of movement

Normal: no problems.
Slight: slight global slowness and poverty of spontaneous movements.
Mild: mild global slowness etc.
Moderate: moderate global slowness etc.
Severe: severe global slowness etc.

Location

Kitchen, Living room, Hall, Dining room, Stairs, Garden, Outside front door.

Gait

Normal: no problems.
Slight: independent walking with minor gait impairment.
Mild: independent walking but with substantial gait impairment.
Moderate: requires an assistance device for safe walking but not a person.
Severe: cannot walk at all or only with another person’s assistance.

Sit-to-stand (impairment)

Normal: no problems. Able to arise quickly without hesitation.
Slight: arising is slower than normal; may need more than one attempt, may
need to move forward in chair to arise. No use of chair arms.
Mild: pushes self up from arms of chair without difficulty.
Moderate: needs to push off; may need to try more than once to arise. Can
get up without help.
Severe: unable to arise without help.

captured, partly to ensure they avoid leaving the house for
exercise, for example.

The spectrum of outcomes to be labelled from the RGB
videos are designed to investigate a variety of patient-centred,
clinical trial-relevant and potentially measurable metrics that
would be possible and interesting to measure for a longer
period in peoples’ own homes in a future study.

A widely-available software called ELAN [14] will be used
to watch up to 4 simultaneously-captured videos running concur-
rently which will show both study participants’ movements and
activities around the kitchen, dining room, living room and hall
of the SPHERE house. ELAN creates annotations on multiple
layers called ‘tiers’ which can be inter-linked, share controlled
vocabularies, share timestamps, or share other categories.

The primary annotator will be a medically trained neurologist
who will view the videos offline to annotate each tier. At their
discretion and according to their experience and confidence
with ELAN, multiple tiers could be annotated in the same video
viewing session (e.g., location and activity). A second rater,
a Movement Disorders specialist neurology consultant, who
will annotate 10 % of the randomly selected videos, blinded
to the ratings produced by the first rater. The first rater will
re-rate a selection of videos at an interval of >1 week from
their original annotations.



This study has been approved by a Research Ethics Committee.

III. DISCUSSION

Inherent in the use of researchers to produce labels from
watching videos is the challenge posed by human error and
human nature. For instance, as a single person evaluates a
large quantity of video data. For example, there may be intra-
rater variability induced by fatigue after several hours/days of
annotating. To improve best practice in annotations, the use
of a second rater, blinded to the annotations of the first rater,
should be helpful to reduce intra-rater variability. However,
then inter-rater variability will be introduced. Of note, it is
appreciated that, even in controlled laboratory conditions with
trained raters, the Parkinson’s disease UPDRS motor score (a
sub-score of the rating scale that has a total possible score of
56) has an inter-rater variability of up to 16 points [15].

While most machine learning methods assume that there
exists a single true label for each data point, typically coming
from a single source, it is possible for variability in annotations
and ratings to be modelled directly by the machine learning
methods. There exists a plethora of work in this area, including
within the medical domain [16], where it is not uncommon
for multiple experts to have disagreeing subjective opinions
on a diagnosis, as well as the smart home domain [17]. The
most relevant methods for this task may be those that attempt
to estimate the true label from annotations by multiple experts
[18], [19] and those that attempt to model directly the accuracy
of annotators, for example by using Expectation Maximization
[20]. Methods which incorporate multiple annotations have
been shown to improve classification accuracy of supervised
machine learning models [21].

The human participant(s) are likely to pose challenges for
the annotators of this dataset. A participant may move out of
view of the camera sensor (e.g., move to a bedroom without a
camera, go behind a door or have their back to the camera), so
the continuity of movement and activities would be disrupted.
Knowledge of when the cameras are recording could induce
bias in the participants’ activities.

The hardware itself can provide challenges: hardware can be
placed in locations at risk of blunt trauma, for example near the
floor where they could be knocked accidentally by participants
passing them. Also, the video resolution may not be enough
for capturing finer-grained PD symptoms (e.g., bradykinesia of
the upper limb). To mitigate this risk, we conducted several pilot
exercises capturing videos of different frame rates and consulted 3
clinicians with movement disorders expertise about the minimum
frame rate necessary to see the movements being evaluated.

The controlled vocabulary chosen for the annotation metrics
presents its own set of unique challenges. Developing an
annotation system is often an iterative process. Whilst it
is helpful to ensure that the phrases and words within a
controlled vocabulary are standardised to the extent that they
are understood easily by other research groups and can be
re-used if desired, they are also necessarily tailor-made for
the use case in question including the participants, setting and
activities under investigation.

For the PD symptom metrics, there is no widely-accepted
controlled vocabulary for creating annotations from this kind
of video data. The aim of this study is to produce technology-
assisted outcome measures to complement, not to replace, the
MDS-UPDRS. However, given that, by its very nature, the
clinical assessment of items such as a patient’s gait is subjective
and non-linear with risk of observer bias, this naturally must
extend to a clinician’s assessment of PD symptoms on a
video. When considering how best to create labels for the
PD symptoms of global spontaneity of movement, gait and
sit-to-stand ability, there was no natural rating scale/label set
which was felt more helpful or appropriate than the 5-point
MDS-UPDRS severity scale for these outcomes. This is a
validated scale [22] for use in people with all severities of
PD with clear examples of all sub-ratings of each symptom
within training videos on the Movement Disorders Society
website (for members). Therefore, despite its limitations, we
are planning to annotate the videos for these outcomes using
the severity scale within the MDS-UPDRS (see table I).

For the non-PD symptoms, outcomes such as room location
are straightforward to create a controlled vocabulary for (e.g.,
kitchen, living room, hall). Less easy to quickly define were
the activity recognition outcome measures. Interestingly, some
groups have found their accelerometry data analytics have
difficulty with distinguishing between standing still and sitting
[23], so to increase the information we provide within the
training dataset we have made a distinction between standing
still and standing with light activity (e.g., washing dishes). We
have followed an iterative path so far, preparing a controlled
vocabulary which is in-line with that previously prepared by
our colleagues [24] but adapting it once the annotations started
being collected, according to its usefulness to the computer
science team and its ease of use to the annotators.

For continuous behaviour or symptom severity (e.g., global
spontaneity of movement), the sampling frequency of labels
has been a subject of discussion amongst our group. Acknowl-
edging frequent fluctuations of PD symptoms, the aim is to
capture them using the technology-assisted outcome measures.
However, this is balanced against both the burden of annotations
needed from many dozens of hours of video recordings and the
pragmatic approach that most people with PD will not fluctuate
in their motor symptoms minute-to-minute. Currently, we are
planning to annotate on a minute-by-minute basis where PD
symptom severity is evaluated and labelled for the preceding
60 seconds of video footage.

IV. CONCLUSION

This study is undertaking ambitious and wide-ranging annota-
tion of video data capturing free-living symptoms and activities
from people with Parkinson’s disease and healthy volunteer
control participants. The annotations will be undertaken post-
hoc by multiple clinician raters and the challenges posed by
this task will be explored and reviewed iteratively. It is hoped
that this will inform future research looking to obtain ground
truth from datasets in the wild in Parkinson’s research, to better
understand this complex and fluctuating disease.



Through participating in a workshop, we would hope to
stimulate conversation around the following questions:

• What are others’ experiences with working with clinician
raters?

• What levels of inter-rater reliability are appropriate for a
gold standard set of this kind?

• Is this the right approach to be taking with free-living
annotation?

• What are some of the approaches people have taken to
reduce rater fatigue?
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