24,189 research outputs found

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page

    Berry phases and zero-modes in toroidal topological insulator

    Full text link
    An effective Hamiltonian describing the surface states of a toroidal topological insulator is obtained, and it is shown to support both bound-states and charged zero-modes. Actually, the spin connection induced by the toroidal curvature can be viewed as an position-dependent effective vector potential, which ultimately yields the zero-modes whose wave-functions harmonically oscillate around the toroidal surface. In addition, two distinct Berry phases are predicted to take place by the virtue of the toroidal topology.Comment: New version, accepted for publication in EPJB, 6 pages, 1 figur

    The universal character of Zwanziger's horizon function in Euclidean Yang-Mills theories

    Get PDF
    In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanziger's horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanziger's horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region Ω\Omega in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region Ω\Omega acquires a gauge independent meaning in the class of the physical correlators.Comment: 14 pages. v2: version accepted by Phys.Lett.

    Non-Collinear Ferromagnetic Luttinger Liquids

    Full text link
    The presence of electron-electron interactions in one dimension profoundly changes the properties of a system. The separation of charge and spin degrees of freedom is just one example. We consider what happens when a system consisting of a ferromagnetic region of non-collinearity, i.e. a domain wall, is coupled to interacting electrons in one-dimension (more specifically a Luttinger liquid). The ferromagnetism breaks spin charge separation and the presence of the domain wall introduces a spin dependent scatterer into the problem. The absence of spin charge separation and the effects of the electron correlations results in very different behaviour for the excitations in the system and for spin-transfer-torque effects in this model.Comment: 6 pages, submitted to Journal of Physics: Conference Series for JEMS 201

    Cancellation of atmospheric turbulence effects in entangled two-photon beams

    Full text link
    Turbulent airflow in the atmosphere and the resulting random fluctuations in its refractive index have long been known as a major cause of image deterioration in astronomical imaging and figures among the obstacles for reliable optical communication when information is encoded in the spatial profile of a laser beam. Here we show that using correlation imaging and a suitably prepared source of photon pairs, the most severe of the disturbances inflicted on the beam by turbulence can be cancelled out. Other than a two-photon light source, only linear passive optical elements are needed and, as opposed to adaptive optics techniques, our scheme does not rely on active wavefront correction.Comment: 5 pages, 3 figure

    The role of damped Alfven waves on magnetospheric accretion models of young stars

    Get PDF
    We examine the role of Alfven wave damping in heating the plasma in the magnetic funnels of magnetospheric accretion models of young stars. We study four different damping mechanisms of the Alfven waves: nonlinear, turbulent, viscous-resistive and collisional. Two different possible origins for the Alfven waves are discussed: 1) Alfven waves generated at the surface of the star by the shock produced by the infalling matter; and 2) Alfven waves generated locally in the funnel by the Kelvin-Helmholtz instability. We find that, in general, the damping lengths are smaller than the tube length. Since thermal conduction in the tube is not efficient, Alfven waves generated only at the star's surface cannot heat the tube to the temperatures necessary to fit the observations. Only for very low frequency Alfven waves ~10^{-5} the ion cyclotron frequency, is the viscous-resistive damping length greater than the tube length. In this case, the Alfven waves produced at the surface of the star are able to heat the whole tube. Otherwise, local production of Alfven waves is required to explain the observations. The turbulence level is calculated for different frequencies for optically thin and thick media. We find that turbulent velocities varies greatly for different damping mechanisms, reaching \~100 km s^{-1} for the collisional damping of small frequency waves.Comment: 29 pages, 12 figures, to appear in The Astrophysical Journa

    On thermalization of magnetic nano-arrays at fabrication

    Full text link
    We propose a model to predict and control the statistical ensemble of magnetic degrees of freedom in Artificial Spin Ice (ASI) during thermalized adiabatic growth. We predict that as-grown arrays are controlled by the temperature at fabrication and by their lattice constant, and that they can be described by an effective temperature. If the geometry is conducive to a phase transition, then the lowest temperature phase is accessed in arrays of lattice constant smaller than a critical value, which depends on the temperature at deposition. Alternatively, for arrays of equal lattice constant, there is a temperature threshold at deposition and the lowest temperature phase is accessed for fabrication temperatures {\it larger rather than smaller} than this temperature threshold. Finally we show how to define and control the effective temperature of the as-grown array and how to measure critical exponents directly. We discuss the role of kinetics at the critical point, and applications to experiments, in particular to as-grown thermalized square ASI, and to magnetic monopole crystallization in as-grown honeycomb ASI.Comment: 14 pages, 2 figures. A theoretical approach to experimental results reported in: Morgan J P, Stein A, Langridge S and Marrows C (2010) Nature Physics 7 7

    An exact nilpotent non-perturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge

    Get PDF
    We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.Comment: 8 pages. v2: version accepted for publication in PhysRev
    corecore