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An exact nilpotent non-perturbative BRST symmetry for the Gribov-Zwanziger action in the linear
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We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger
action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge
fixing ambiguity in the linear covariant gauge.

I. INTRODUCTION

The Gribov-Zwanziger framework [1, 2] is a non-
perturbative approach to face the hard problem of understand-
ing the behavior of Yang-Mills theories in the infrared re-
gion, where standard perturbation theory cannot be applied.
It takes into account the existence of Gribov copies1 [1], re-
sulting in a modification of the Faddeev-Popov quantization
formula for the Euclidean functional integral. Gribov copies
are present whenever the gauge fixing condition allows multi-
ple solutions, a very generic feature as shown by [5]. So far,a
non-trivial set of results has been obtained from this approach,
ranging from the gluon and ghost two-point functions [6–8],
to the glueball spectrum [9, 10], to thermodynamic quanti-
ties and phase transitions [11–17], to supersymmetric theories
[18, 19] and to the case where Higgs matter fields are present
[20]. Nevertheless, the important issue of the BRST symmetry
still lacks a simple answer, see [21–37] for an overview of the
on-going discussion. In the present paper we propose a man-
ifestly BRST invariant formulation of the Gribov-Zwanziger
framework, resulting in the existence of a non-perturbative ex-
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act BRST symmetry. We limit ourselves here to outline the
main steps of our reasoning, postponing all details to a longer
and complete work.

II. THE ORIGINAL GRIBOV-ZWANZIGER ACTION IN
THE LANDAU GAUGE

The framework [1, 2], applied toSU(N) gauge theories in
Euclidean space-time, implements the restriction of the path
integral to the Gribov regionΩ in the Landau gauge,∂µAa

µ= 0,
namely

Ω = { Aa
µ| ∂µAa

µ = 0, M ab(A)> 0 } , (1)

whereM ab is the Faddeev-Popov operator

M ab =−δab∂2+g fabcAc
µ∂µ, with ∂µAa

µ = 0. (2)

According to [1, 2], for the partition function of quantized
Yang-Mills theory we write

Z=

∫
Ω
[DA] δ(∂Aa) det(M ) e−SYM . (3)

The restriction of the domain of integration to the regionΩ
can be effectively implemented by adding to the starting ac-
tion an additional non-local termH(A), known as the horizon
function. More precisely [1, 2]

∫
Ω
[DA] δ(∂Aa) det(M ) e−SYM

=
∫

[DA] δ(∂Aa) det(M ) e−(SYM+γ4H(A)−4Vγ4(N2−1))(4)
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where

H(A) = g2
∫

d4xd4y fabcAb
µ(x)

[

M −1(x,y)
]ad

f decAe
µ(y) ,

(5)
with

[

M −1
]

denoting the inverse of the Faddeev-Popov oper-
ator, see eq. (2). The mass parameterγ2 appearing in expres-
sion (4) is known as the Gribov parameter. It is determined in
a self-consistent way by the gap equation [2]

〈H〉= 4V(N2−1) , (6)

where the vacuum expectation value〈H〉 has to be evaluated
with the measure defined in eq. (4);V denotes the space-time
volume. Expression (4) can be cast in a more suitable form
by introducing a set of commuting(φ̄,φ) and anticommuting
(ω, ω̄) auxiliary fields [2], namely∫

Ω
[DA] δ(∂Aa) det(M )e−SYM =

∫
[DΦ] e−(SGZ−4Vγ4(N2−1))

,

(7)
whereΦ refers to all fields present andSGZ stands for the
Gribov-Zwanziger action2

SGZ = SFP+
∫

d4x
(

φ̄M (A)φ− ω̄M (A)ω+ γ2A(φ̄+φ)
)

,

(8)
with SFP being the Faddeev-Popov action in the Landau gauge

SFP = SYM+

∫
d4x

(

ba∂µAa
µ+ c̄a∂µDab

µ cb
)

. (9)

Notice that the gap equation (6) can be rewritten as

∂Ev

∂γ2 = 0 , e−VEv =
∫

[DΦ] e−(SGZ−4Vγ4(N2−1)) , (10)

whereEv denotes the vacuum energy. As already mentioned,
till now, a simple resolution of the issue of the BRST symme-
try for the action (8) is still lacking.

One important property which should be underlined here is
that, as observed in [7], the Gribov regionΩ does not support
anymore infinitesimal gauge transformations. If one performs
an infinitesimal gauge transformation of a generic fieldAµ be-
longing toΩ, the resulting transformed field lies outside the
regionΩ. From this simple argument, one easily understands
that the restriction of the functional integral to the region Ω
might give rise to possible incompatibilities with the standard
BRST symmetry.

III. WARMING UP: A NON-PERTURBATIVE EXACT
BRST SYMMETRY FOR THE GRIBOV-ZWANZIGER

ACTION IN THE LANDAU GAUGE

The previous observation has led us to consider a non-local
gauge invariant transverse fieldAh

µ, ∂µAh
µ = 0, obtained by

2 We employ here a short-hand notation, namelȳφM (A)φ =
φ̄ac

µ M (A)abφbc
µ ,ω̄M (A)ω = ω̄ac

µ M (A)abωbc
µ ,γ2A(φ̄ + φ) =

gγ2 f abcAa
µ(φ̄bc

µ +φbc
µ ) .

minimizing the auxiliary functional Tr
∫

d4xAµAµ along the
gauge orbit ofAµ, cf. [38–40] and Appendix A,

Ah
µ = Pµν

(

Aν − ig

[

∂A
∂2 ,Aν

]

+
ig
2

[

∂A
∂2 ,∂ν

∂A
∂2

])

+O(A3)

= Aµ−
∂µ

∂2 ∂A+ ig

[

Aµ,
1
∂2 ∂A

]

+
ig
2

[

1
∂2 ∂A,∂µ

1
∂2 ∂A

]

+ig
∂µ

∂2

[

∂ν

∂2 ∂A,Aν

]

+ i
g
2

∂µ

∂2

[

∂A
∂2 ,∂A

]

+O(A3) , (11)

with Pµν =
(

δµν −
∂µ∂ν
∂2

)

the transverse projector.

Expression (11) is left invariant by infinitesimal gauge trans-
formations order by order. Moreover, looking at eq. (11), one
realizes that a divergence∂A is present in all higher order
terms. As a consequence, we can rewrite Zwanziger’s hori-
zon functionH(A) in terms of the invariant fieldAh as

H(A) = H(Ah)−R(A)(∂A) (12)

where R(A)(∂A) is a short-hand notation,R(A)(∂A) =∫
d4xd4yRa(x,y)(∂Aa)y, R(A) being an infinite non-local

power series ofAµ. Therefore, for the Gribov-Zwanziger ac-
tion, we may write, omitting color indices for brevity,

SGZ = SYM+

∫
d4x(b∂µAµ+ c̄∂µDµc)+ γ4H(A)

= SYM+

∫
d4x(b∂µAµ+ c̄∂µDµc)+ γ4H(Ah)− γ4R(A)(∂A)

= SYM+

∫
d4x

(

bh∂µAµ+ c̄∂µDµc
)

+ γ4H(Ah) , (13)

where the new fieldbh stands for

bh = b− γ4R(A) . (14)

The use of the fieldbh enables us to write down an ex-
act nilpotent non-perturbative BRST transformation. Rewrit-
ing the Gribov-Zwanziger action by using the auxiliary fields
(φ̄,φ,ω, ω̄), i.e.

SGZ = SYM+
∫

d4x
(

bh∂µAµ+ c̄∂µDµc
)

+

∫
d4x

(

φ̄M (Ah)φ− ω̄M (Ah)ω+ γ2Ah(φ̄+φ)
)

,(15)

it becomes clear that expression (15) is left invariant by the
nilpotent non-perturbative BRST transformation

sγ2 = s+ δγ2 , s2
γ2 = 0 , sγ2SGZ = 0 . (16)

In eqs. (16), the operatorsstands for the usual BRST operator

sAa
µ = −Dab

µ cb
, sca =

g
2

f abccbcc
, sc̄a = ba

, sba = 0 ,

sφab
µ = ωab

µ , sωab
µ = 0 , sω̄ab

µ = φ̄ab
µ , sφ̄ab

µ = 0 , (17)

while

δγ2 c̄a = −γ4Ra(A) , δγ2ba = γ4sRa(A) ,

δγ2ω̄ac
µ = γ2g fkbcAh,k

µ

[

M −1(Ah)
]ba

, δγ2(rest) = 0 .(18)
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The operators(s,δγ2) obey the nice algebra

{s,δγ2}= s2 = δ2
γ2 = s2

γ2 = 0 (19)

and clearly, forγ2 → 0 we havesγ2 → s.

The operatorsγ2 is a genuine non-perturbative BRST operator,
as it depends explicitly on the non-perturbative Gribov param-
eterγ2.

Thanks tosγ2, we can write down non-perturbative Ward iden-
tities which clarify the origin of the breaking of the standard
BRST operator. From the non-perturbative exact Slavnov-
Taylor Ward identities

〈sγ2 (c̄Λ)〉= 0 , (20)

whereΛ has ghost number zero, it follows that the operators
will always acquire a breaking term proportional toγ2, namely

〈s(c̄Λ)〉=−〈δγ2 (c̄Λ)〉 . (21)

This equation gives a clear and simple understanding of the
origin of the breaking of the standard BRST symmetrys. It
states thats is always plagued by breaking terms which are
proportional to the non-perturbative Gribov parameter andit
signals that, in presence of the Gribov horizon, the BRST op-
erators has to be replaced by the non-perturbative onesγ2. It
is the breaking ofs that has also been signalled recently on
the lattice [37]. We will come back to this in a more detailed
forthcoming paper.

Moreover, we notice that

∂SGZ

∂γ2 6= sγ2(something) , (22)

indicating that the Gribov parameterγ2 is not akin to a gauge
parameter. As such, it will enter physical quantities. With
physical quantities, we mean the colorless gauge invariantop-
erators which are immediately seen to belong to the cohomol-
ogy of the new BRST operatorsγ2.

IV. GRIBOV PROBLEM IN THE LINEAR COVARIANT
GAUGE AND ITS BRST INVARIANT RESOLUTION

Having found a non-perturbative exact nilpotent symme-
try of the Gribov-Zwanziger action in the Landau gauge, we
move to the linear covariant gauges. We shall proceed by
staying as close as possible to the BRST construction of the
gauge-fixing, i.e. by defining it as an exact non-perturbative
variation, by employing the nilpotent operatorsγ2 introduced
before. Moreover, this construction will be linked to the in-
troduction of a suitable regionΩh in field space which shares
many properties of the Gribov regionΩ of the Landau gauge.

Thus, according to the general BRST procedure for the gauge-
fixing, we write down the followingsγ2-invariant action

SLCG
GZ =Sh

FP+

∫
d4x

(

φ̄M (Ah)φ− ω̄M (Ah)ω+ γ2Ah(φ̄+φ)
)

,

(23)

with

Sh
FP = SYM+ sγ2

∫
d4x

(

c̄∂µAµ−
α
2

c̄bh
)

= SYM+

∫
d4x

(

bh∂µAµ−
α
2

bhbh+ c̄∂µDµc
)

(24)

Expression (23) naturally generalizes the Gribov-Zwanziger
action of the Landau gauge to an arbitrary linear covariant
gauge in a manifestly non-perturbative BRST invariant way,
namely

sγ2SLCG
GZ = 0 . (25)

The action (23) reduces precisely to the Gribov-Zwanziger ac-
tion in the limit α → 0

SLCG
GZ

∣

∣

α=0 = SGZ , (26)

while yielding the usual action of the linear covariant gauge
whenγ2 = 0, i.e.

SLCG
GZ

∣

∣

γ2=0 = SFP = SYM+
∫

d4x
(

b∂µAµ−
α
2

bb+ c̄∂µDµc
)

,

(27)
Expression (27) is nothing but the Faddeev-Popov action of
the linear covariant gauges

∂µAµ = αb , (28)

whereα stands for the gauge parameter andb for the Lagrange
multiplier.

Since in expression (23) the gauge parameterα is coupled to
a sγ2-exact quantity, expectation values ofsγ2-invariant quan-
tities will not depend onα. In particular, this will be the case
for the dynamical mass scaleγ2. As we shall see at the end of
this section, the independence ofγ2 from α is a consequence
of the fact thatγ2 is now determined by the gauge invariant
horizon condition

∂Ev

∂γ2 = 0⇒ 〈H(Ah)〉= 4V(N2−1)

e−VEv =

∫
[DΦ] e−(S

LCG
GZ −4Vγ4(N2−1)) , (29)

where use has been made of the identity

∫
[DΦ]

δ
δb

(

F (A)e−(SLCG
GZ −4Vγ4(N2−1))

)

= 0 , (30)

valid for an arbitrary quantityF (A).

It is also interesting to note that, integrating out the fieldbh in
expression (23), one gets the nice equation

∫
d4x

(

bh∂µAµ−
α
2

bhbh
)

⇒

∫
d4x

1
2α

(∂µAµ)
2
. (31)

We point out that, recently, the linear covariant gauges have
been studied in lattice numerical simulations by [41, 42] or
with functional methods by [43–46]. It is worth underlin-
ing that the tree level gluon propagator [47] stemming from
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expression (23) turns out to be in qualitative agreement with
the available lattice numerical simulations [41, 42], exhibiting
an infrared suppression in the gluon sector. A more detailed
analysis will involve taking into account additionald= 2 con-
densates, following [7]. Let us provide a geometrical under-
standing of the action (23) by showing that it enables one to
eliminate infinitesimal gauge copies.

The Faddeev-Popov operator for generalα reads

M ab(A) =−∂µDab
µ =−∂µ(δab∂µ−g fabcAc

µ)

=−δab∂2+αg fabcbc+g fabcAc
µ∂µ . (32)

Infinitesimal Gribov copies will appear whenever

M ab(A)ζb = 0, (33)

with ζa a normalizable zero mode, in which caseAa
µ−Dab

µ ζb

also fulfills condition (28) ifAa
µ does.

Unlike the case of the Landau gauge, we notice that, when
α 6= 0, the partial derivative∂ and the covariant oneD do not
commute. As a consequence, the Faddeev-Popov operator in
eq. (32) is not Hermitian. The Hermiticity ofM ab plays an
important role in the original Gribov-Zwanziger analysis.Let
us therefore consider

M ab(Ah) =−∂µ(δab∂µ−g fabcAh,c
µ ) , (34)

with Ah the gauge invariant field defined in eq. (11). By con-
struction, the operatorM (Ah) in eq. (34) is gauge invariant
order by order and Hermitian, thanks to the transversality of
Ah. It thus makes sense to define the region

Ωh = { Aµ|∂µAa
µ = αba

, ∂µAh
µ = 0, M ab(Ah)> 0 } . (35)

The regionΩh shares the important properties of the Gribov
regionΩ of the Landau gauge of being convex and bounded in
all directions [48]. Those properties follow from the linearity
of the operatorM ab(Ah) in the fieldAh.

Let us recall that the Landau gauge is, as far as we know, the
only gauge for which it has been proven that every gauge orbit
crosses at least once the Gribov regionΩ [48, 49], i.e. a gauge
field configuration located outside of the regionΩ is a copy of
some configuration located withinΩ. The essential ingredi-
ent in the proof of [48, 49] is that the functional Tr

∫
d4xAµAµ

achieves its absolute minimum along the gauge orbit ofA, and
this for an arbitrary starting gauge configurationA. Said oth-
erwise, the search for the minima along the gauge orbit can be
regarded as a pure mathematical problem for the functional
Tr

∫
d4xAµAµ, not related to the particular gauge condition

obeyed by the configurationA. Actually, it turns out that the
functional Tr

∫
d4xAµAµ has many relative minima along the

gauge orbit before attaining its absolute minimum. The set
of the relative minima of Tr

∫
d4xAµAµ is precisely the Gri-

bov regionΩ. The proof of [48, 49] shows thus that, given
an arbitrary gauge configurationA, it is always possible to in-
troduce a related transverse fieldAh through the process of
minimization of the functional Tr

∫
d4xAµAµ along the gauge

orbit of A. Any configurationAh can be identified with a lo-
cal minimum of the functional Tr

∫
d4xAµAµ, while any such

minimum is left invariant by infinitesimal gauge transforma-
tions. Our construction of a non-perturbative BRST operator
is possible with anyAh, but for our purposes we use the unique
order by order representation given in eq. (11). These consid-
erations make the regionΩh a suitable candidate to integrate
over.

Let us proceed by showing that the use of the region (35) en-
ables us to eliminate a large class of infinitesimal gauge copies
from the partition function. This proposition borrows froman
earlier insight of some of us in [47, 50], where only the trans-

verse componentAT
µ , AT

µ = (δµν −
∂µ∂ν
∂2 )Aν, was considered

instead of the complete invariant gauge fieldAh.

Following [47, 50], let us assume thatζa is a zero mode of the
Faddeev-Popov operator (32) having a Taylor expansion inα,

ζa =
∞

∑
n=0

αnζa
n. (36)

Let us decompose the gauge fieldAa
µ according to

Aµ = Ah
µ+ τµ , ∂µτµ = αb , (37)

so that, in view of eq. (37), we can write

τµ =
∞

∑
n=0

αn+1τn
µ = ατ̂µ , (38)

sinceτµ has to vanish in the limitα → 0. If Aµ ∈ Ωh, we can
write

ζa = −g
[

M (Ah)−1
]ad

f dbc∂µ

(

τb
µζc

)

= −gα
[

M (Ah)−1
]ad

f dbc∂µ

(

τ̂b
µζc

)

, (39)

or, expanding in powers ofα,

∑
n

αnζa
n =−∑

n
gαn+1

[

M (Ah)−1
]ad

f dbc∂µ

(

ζc
nτ̂b

µ

)

(40)

Matching orders ofα shows that thenth order coefficientζa
n

is proportional to the(n−1)th. Since for the first coefficient
we findζa

0 = 0, we immediately findζa
n = 0, and thusζa = 0.

Said otherwise, all zero modes that possess a Taylor expan-
sion aroundα = 0, are automatically vanishing. As such, the
restriction toΩh excludes at least the set of infinitesimally
connected gauge copies related to the aforementioned zero
modes.

We proceed by implementingM h ≡ M ab(Ah) > 0 into the
path integral. We rely on the so-called Gribov no-pole condi-
tion [1], whose all order implementation can be found in [27].
For any external fieldAh, we can use Wick’s theorem to in-
vert the operatorM ab(Ah) in any dimensiond. Denoting by
Gab(Ah, p2) = 〈p| 1

M ab(Ah)
|p〉 the Fourier-transform of the in-

verse ofM ab(Ah), one introduces the so-called Gribov form
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factor [27]σ(Ah, p2) through

Gab(Ah
, p2) =

δab

N2−1
Gcc(Ah

, p2) =
δab

N2−1
1+σ(Ah, p2)

p2 .

(41)
Repeating the procedure outlined in [27], it follows that at
zero momentum

σ(Ah
,0) = (42)

−
g2

Vd(N2−1)

∫
ddk
(2π)d

ddq
(2π)d

Ah,ab
µ (−k)

[

(M h)−1
]bc

k−q
Ah,ca

µ (q).

Comparison of eqns. (5) and (42) learns thatσ(Ah,0) =
H(Ah)

Vd(N2−1)
. We will concentrate on the zero momentum limit,

since it is expected on general grounds3 that the smallest
eigenvalue ofM ab(Ah) will carry no momentum, so it would
be sufficient to avoid this eigenvalue becoming negative. At
the level of expectation values, we can rewrite eq. (42) as

Gh(p2) = 〈Gaa(Ah
, p2)〉

conn
=

1

p2(1−〈σ(Ah, p2)〉
1PI

)
, (43)

so that we must impose at the level of the path integral

〈σ(Ah,0)〉
1PI

≤ 1, or

〈H(Ah)〉
1PI

≤ Vd(N2−1) . (44)

We can add this constraint to the path integral measure with a
step function. Via a saddle point evaluation in the thermody-
namic limit [1, 26], one then finds

[DΦ]θ[Vd(N2−1)−H(Ah)]e−Sh
FP

= [DΦ]

∫
dη

2πiη
e−Sh

FP+η[Vd(N2−1)−H(Ah)]

→ [DΦ]e−Sh
FP+η∗[Vd(N2−1)−H(Ah)]

, (45)

whereSh
FP stands for the expression given in eq. (24). The

saddle point equation precisely amounts to eq. (29), i.e. the
horizon condition with identificationη∗ = γ4. As the hori-
zon condition is writable in terms of the vacuum energy and
since the only contributing diagrams to the latter are 1PI (see
also [27]), it indeed follows that condition (44) is met. As
such, we do have excluded a large set of zero modes by ef-
fectively having imposed thatM (Ah)> 0 via the action (23).
Upon introduction of the auxiliary fields(φ̄,φ,ω, ω̄), the lat-
ter is equivalent to the action appearing in eq. (23), given that
eq. (29) holds.

3 We can considerM ab(Ah) as a perturbed system around−∂2, which
reaches its lowest eigenvalue at zero momentum. A few comments regard-
ing this were made in [4]. One can also check, a posteriori butexplicitly,
that the expectation value〈σ(Ah,0)〉 is maximal.

V. CONCLUSION

For the first time, we have identified a non-perturbative
nilpotent BRST symmetry for gauge theories quantized à la
Gribov-Zwanziger, that is by further restricting the domain of
integration in the path integral. This eliminates a large set of
gauge copies and deeply affects the infrared low-momentum
regime of the gauge theory. The new BRST operatorsγ2 de-

pends explicitly on the gauge invariant mass parameterγ2 that
is linked to the aforementioned restriction. As such, the oper-
atorsγ2 itself is intertwined with this geometric restriction.

The introduction ofsγ2 opens up whole new strata of ap-
plications. We have already discussed a first one in this pa-
per, namely a non-perturbative extension of the usual linear
covariant gauge to a setting where the Gribov gauge fixing
ambiguity is also faced in this gauge. Our setup generalizes
to the Refined Gribov-Zwanziger approach [7], in which case
we can make contact with the gauge invariantd = 2 conden-
sate〈A2

min〉, of important phenomenological interest [51, 52].
A renormalization analysis of the proposed framework is al-
ready in preparation, of relevance to explicit studies of propa-
gators, spectrum and thermodynamics. Generalizations, com-
patible with the new non-perturbative BRST, to the matter
sector are also possible. Moreover, it would also be interest-
ing to make contact with lattice studies of the linear covariant
gauge, e.g. to find out if a practical numerical implementation
of our proposal exists. We are already studying a functional
depending on the original gauge fieldAµ and an auxiliary field
Bµ, with the property that the minimum occurs for∂µAµ = αb
(thus effectively implementing the linear covariant gauge) and
for Bµ = Ah

µ with M (B)≥ 0. This could circumvent potential
issues with the convergence of the series expression used in
eq. (11) to defineAh in case of “large” gauge fields, while it
would also open the road to simulation of our proposed non-
perturbative linear covariant gauge. We will report on thisin
future work.

As a final but most crucial remark, we stress that no sacri-
fices have to be made w.r.t. gauge invariance, even when the
Gribov problem is taken into account. The physical content
of the theory is described by thesγ2-cohomology, which can
be studied along the lines of [53, 54] upon localization of our
approach, another matter of current investigation.
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Appendix A: A gauge invariant transversal gauge field

As it will turn out, the construction of the transverse gaugefield Ah
µ follows from the minimization of the functionalfA[u]

fA[u]≡ Tr
∫

d4xAu
µAu

µ = Tr
∫

d4x

(

u†Aµu+
i
g

u†∂µu

)(

u†Aµu+
i
g

u†∂µu

)

(A1)

along the gauge orbit of a given configurationAµ. To give a well defined mathematical meaning to expression (A1), we shall
require that bothAa

µ and the local gauge transformations,u∈ U, are square-integrable, i.e.

||A||2 = Tr
∫

d4xAµAµ =
1
2

∫
d4xAa

µAa
µ <+∞ , ||u†∂u||2 = Tr

∫
d4x

(

u†∂µu
)(

u†∂µu
)

<+∞ . (A2)

Then, it has been shown [48, 49] thatfA[u] reaches its absolute minimum along the gauge orbit ofAµ, i.e. there exists a certainh
such that

δ fA[h] = 0 , (A3)

δ2 fA[h] ≥ 0 , (A4)

fA[h] ≤ fA[u] , ∀u∈ U . (A5)

Following [38–40], we can work out the conditions (A3) and (A4) in a series expansion. We set

v= heigω = heigωaTa
, (A6)

with
[

Ta
,Tb

]

= i f abc
, Tr

(

TaTb
)

=
1
2

δab
, (A7)

We first obtain4

Av
µ = Ah

µ+ ig[Ah
µ,ω]+

g2

2
[[ω,Ah

µ],ω]− ∂µω+ i
g
2
[ω,∂µω]+O(ω3) , (A8)

One subsequently finds

fA[v] = fA[h]+2Tr
∫

d4x
(

ω∂µAh
µ

)

−Tr
∫

d4xω∂µDµ(A
h)ω+O(ω3) , (A9)

Armed with this expression, one simply realizes that

δ fA[h] = 0 ⇔ ∂µAh
µ = 0 ,

δ2 fA[h] > 0 ⇔ −∂µDµ(A
h) > 0 (A10)

are the conditions for a local minimum. Clearly, this is the apriori reason why the Gribov regionΩ, eq. (1), is introduced as it
is.

The transversality condition,∂µAh
µ = 0, can be solved forh= h(A) as a power series inAµ. Setting

Ah
µ = h†Aµh+

i
g

h†∂µh , h= eigξ = eigξaTa
, (A11)

4 We refer to [40] for technical details.
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we expand the gauge transformation matrixh in powers ofξ

h= 1+ igξ−
g2

2
ξ2+O(ξ3) . (A12)

As such,

Ah
µ = Aµ− ∂µξ+ ig[Aµ,ξ]+ i

g
2
[ξ,∂µξ]+g2ξAµξ−

g2

2
Aµξ2−

g2

2
ξ2Aµ+O(ξ3) . (A13)

Imposing∂µAh
µ = 0 yields

∂2ξ = ∂µA+ ig[∂µAµ,ξ]+ ig[Aµ,∂µξ]+g2∂µξAµξ+g2ξ∂µAµξ+g2ξAµ∂µξ

−
g2

2
∂µAµξ2−

g2

2
Aµ∂µξξ−

g2

2
Aµξ∂µξ−

g2

2
∂µξξAµ−

g2

2
ξ∂µξAµ−

g2

2
ξ2∂µAµ

+ i
g
2
[ξ,∂2ξ]+O(ξ3) . (A14)

Solving iteratively, we arrive at

ξ =
1
∂2 ∂µAµ+ i

g
∂2

[

∂A,
∂A
∂2

]

+ i
g
∂2

[

Aµ,∂µ
∂A
∂2

]

+
i
2

g
∂2

[

∂A
∂2 ,∂A

]

+O(A3) , (A15)

and thus

Ah
µ = Aµ−

1
∂2 ∂µ∂A− ig

∂µ

∂2

[

Aν,∂ν
∂A
∂2

]

− i
g
2

∂µ

∂2

[

∂A,
1
∂2 ∂A

]

+ ig

[

Aµ,
1
∂2 ∂A

]

+ i
g
2

[

1
∂2 ∂A,

∂µ

∂2 ∂A

]

+O(A3) . (A16)

It is interesting to rewriteAh
µ as

Ah
µ =

(

δµν −
∂µ∂ν

∂2

)(

Aν − ig

[

1
∂2 ∂A,Aν

]

+
ig
2

[

1
∂2 ∂A,∂ν

1
∂2 ∂A

])

+O(A3)

=

(

δµν −
∂µ∂ν

∂2

)

Ψν (A17)

Under an infinitesimal gauge transformation

δAµ =−∂µλ+ ig[Aµ,λ] . (A18)

it can be checked that

δΨν =−∂ν

(

λ− i
g
2

[

∂A
∂2 ,λ

])

+O(λ2) , (A19)

The combined knowledge of (A17) and (A19) nicely displays thatAh
µ is indeed transverse, while it is also gauge invariant, order

by order. It is perhaps interesting to notice here that in [55], the one loop renormalizability of the non-local operator1
2

∫
d4xAhAh,

i.e. the local minimum of eq. (A2), was explicitly checked.
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