34 research outputs found

    Biochemical comparison of two Hypostomus populations (Siluriformes, Loricariidae) from the Atlântico Stream of the upper Paraná River basin, Brazil

    Get PDF
    Two syntopic morphotypes of the genus Hypostomus - H. nigromaculatus and H. cf. nigromaculatus (Atlântico Stream, Paraná State) - were compared through the allozyme electrophoresis technique. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD) were analyzed, attributing the score of 20 loci, with a total of 30 alleles. Six loci were diagnostic (Aat-2, Gcdh-1, Gpi-A, Idh-1, Ldh-A and Mdh-A), indicating the presence of interjacent reproductive isolation. The occurrence of few polymorphic loci acknowledge two morphotypes, with heterozygosity values He = 0.0291 for H. nigromaculatus and He = 0.0346 for H. cf. nigromaculatus. FIS statistics demonstrated fixation of the alleles in the two morphotypes. Genetic identity (I) and distance (D) of Nei (1978) values were I = 0.6515 and D = 0.4285. The data indicate that these two morphotypes from the Atlântico Stream belong to different species

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Targeting apoptosis pathways in glioblastoma

    Full text link
    The treatment of glioblastoma remains a major challenge for clinicians since these highly aggressive brain tumors are relatively resistant towards radio- and chemotherapy. The pathways that control apoptosis are altered in glioblastoma cells leading to resistance towards apoptotic stimuli in general. In this review we describe the alterations affecting the p53 pathway, the BCL-2 protein family, the inhibitor of apoptosis proteins and several growth factor pathways involved in the regulation of programmed cell death and define possible targets for new therapies within these apoptotic pathways in glioblastomas. Moreover, we review strategies to target death receptor pathways, most notably to render the glioblastoma cells more susceptible towards this approach without enhancing toxicity in general. Most of the strategies targeting apoptosis in glioblastomas presented here are in a pre-clinical stage of development, however, they all share the ultimative goal to improve the outcome for glioblastoma patients
    corecore