32 research outputs found
Unveiling the formation route of the largest galaxies in the Universe
Observational evidence indicates that the role of gas is secondary to that of gravity in the formation of the most luminous spheroids inhabiting the centres of galaxy associations, as originally conjectured in the late 80s/early 90s. However, attempts to explain the origin of the Fundamental Plane (FP) of massive early-type galaxies (ETGs) - a tilted version of the scaling relation connecting the size, velocity dispersion and mass of virialized homologous systems - based on sequences of pairwise mergers, have systematically concluded that dissipation cannot be ignored. We use controlled simulations of the pre-virialization stage of galaxy groups to show that multiple collisionless merging is capable of creating realistic first-ranked galaxies. Our mock remnants define a thin FP that perfectly fits data from all kinds of giant ETGs in the local volume, showing the existence of a unified relationship for these systems. High-ranked galaxies occupy in the FP different areas than standard objects, a segregation which is viewed essentially as zero-point offsets in the 2D correlations arising from standard projections of this plane. Our findings make a strong case for considering hierarchical dissipationless merging a viable route for the formation of the largest galaxies in the Universe
The time-scales of major mergers from simulations of isolated binary galaxy collisions
A six-dimensional parameter space based on high-resolution numerical
simulations of isolated binary galaxy collisions has been constructed to
investigate the dynamical friction timescales, , for major
mergers. Our experiments follow the gravitational encounters between
pairs of similarly massive late- and early-type galaxies with orbital
parameters compliant to the predictions of the LambdaCDM cosmology. We analyze
the performance of different schemes for tracking the secular evolution of
mergers, finding that the product of the intergalactic distance and velocity is
best suited to identify the time of coalescence. In contrast, a widely used
merger time estimator such as the exhaustion of the orbital spin is shown to
systematically underpredict , resulting in relative errors
that can reach 60% for nearly radial encounters. Regarding the internal spins
of the progenitors, we find that they can lead to total variations in the
merger times above 30% in highly circular encounters, whereas only that of the
principal halo is capable of modulating the strength of the interaction
prevailing throughout a merger. The comparison of our simulated merger times
with predictions from different variants of a well-known fitting formula has
revealed an only partially satisfactory agreement, which has led us to
recalculate the values of the coefficients of these expressions to obtain
relations that fit perfectly major mergers. The observed biases between data
and predictions, that do not only apply to the present work, are inconsistent
with expectations from differences in the degree of idealization of the
collisions, their metric, spin-related biases, or the simulation set-up. This
hints to a certain lack of accuracy of the dynamical friction modelling,
arising perhaps from a still not quite complete identification of the
parameters governing orbital decay.Comment: 20 pages, 11 figures, 3 tables. Accepted for publication in A&
Forming first-ranked early-type galaxies through hierarchical dissipationless merging
We have developed a computationally competitive N-body model of a previrialized aggregation of galaxies in a flat Î cold dark matter Universe to assess the role of the multiple mergers that take place during the formation stage of such systems in the configuration of the remnants assembled at their centres. An analysis of a suite of 48 simulations of low-mass forming groups (Mtot,gr ⌠1013âhâ1âMâ) demonstrates that the gravitational dynamics involved in their hierarchical collapse is capable of creating realistic first-ranked galaxies without the aid of dissipative processes. Our simulations indicate that the brightest group galaxies (BGGs) constitute a distinct population from other group members, sketching a scenario in which the assembly path of these objects is dictated largely by the formation of their host system. We detect significant differences in the distribution of SĂ©rsic indices and total magnitudes, as well as a luminosity gap between BGGs and the next brightest galaxy that is positively correlated with the total luminosity of the parent group. Such gaps arise from both the grow of BGGs at the expense of lesser companions and the decrease in the relevance of second-ranked objects in equal measure. This results in a dearth of intermediate-mass galaxies which explains the characteristic central dip detected in their luminosity functions in dynamically young galaxy aggregations. The fact that the basic global properties of our BGGs define a thin mass Fundamental Plane strikingly similar to that followed by giant early-type galaxies in the local Universe reinforces confidence in the results obtained
The alhambra photometric system
This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500 Ă
to 9700 Ă
. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD, and atmospheric transmission curves, and using some first- and second-order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey ugriz hotometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally, we develop and discuss a strategy to calculate the photometric zero points of the different pointings in the ALHAMBRA project.Ministerio de EducaciĂłn y Ciencia AYA2006-14056 BES-2007-1476
Stellar physics with the ALHAMBRA photometric system
The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (Teff, log g, [Fe/H], and color excess E(B - V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used
Genetic Differentiation in a Sample from Northern Mexico City Detected by HLA System Analysis: Impact in the Study of Population Immunogenetics
The major histocompatibility complex is directly involved in the immune response and thus the genes coding for its proteins are useful markers for the study of genetic diversity, susceptibility to disease (autoimmunity and infections), transplant medicine, and pharmacogenetics, among others. The polymorphism of the system also allows researchers to use it as a proxy for population genetics analysis, such as genetic admixture and genetic structure. In order to determine the immunogenetic characteristics of a sample from the northern part of Mexico City and to use them to analyze the genetic differentiation from other admixed populations, including those from previous studies of Mexico City population, we analyzed molecular typing results of donors and patients from the Histocompatibility Laboratory of the Central Blood Bank of the Centro MeÌdico Nacional La Raza selected according to their geographic origin. HLA-A, -B, -DRB1, and -DQB1 alleles were typed by PCR-SSP procedures. Allelic and haplotypic frequencies, as well as population genetics parameters, were obtained by maximum likelihood methods. The most frequent haplotypes found included HLA-A*02/-B*39/- DRB1*04/-DQB1*03:02P; HLA-A*02/-B*35/-DRB1*04/-DQB1*03:02P; HLA-A*68/-B*39/- DRB1*04/-DQB1*03:02P, and HLA-A*02/-B*35/-DRB1*08/-DQB1*04. Important to observe is that the second most frequent haplotype found in our sample (HLA-A*02/-B*35/-DRB1*04/- DQB1*03:02P) has not been previously reported in any mixed ancestry populations from Mexico but it is commonly encountered in Native American human groups, which can be a reflection on the impact of migration dynamics in the genetic conformation of the northern part of Mexico City, and the limitations of previous studies with regard to the genetic diversity of the analyzed groups. Differences found in haplotypic frequencies demonstrated that large urban conglomerates cannot be analyzed as one homogeneous entity, but rather should be understood as a set of structures in which social, political, and economical factors influence their genesis and dynamics
El primer año de la pandemia â ÂżQuĂ© hemos aprendido del SARS-CoV-2/COVID-19?
Editorial (no Summary)Editorial (Sin resumen
The impact from survey depth and resolution on the morphological classification of galaxies
We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.Ministerio de EconomĂa y Competitividad AYA2010-15169, AYA2013-42227-P, AYA2013-4318
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago
Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ℠3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (†3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception