20 research outputs found

    Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    Get PDF
    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34- 72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genomeRevisión por pare

    Risk of placental abruption in relation to migraines and headaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migraine, a common chronic-intermittent disorder of idiopathic origin characterized by severe debilitating headaches and autonomic nervous system dysfunction, and placental abruption, the premature separation of the placenta, share many common pathophysiological characteristics. Moreover, endothelial dysfunction, platelet activation, hypercoagulation, and inflammation are common to both disorders. We assessed risk of placental abruption in relation to maternal history of migraine before and during pregnancy in Peruvian women.</p> <p>Methods</p> <p>Cases were 375 women with pregnancies complicated by placental abruption, and controls were 368 women without an abruption. During in-person interviews conducted following delivery, women were asked if they had physician-diagnosed migraine, and they were asked questions that allowed headaches and migraine to be classified according to criteria established by the International Headache Society. Logistic regression procedures were used to calculate odds ratios (aOR) and 95% confidence intervals (CI) adjusted for confounders.</p> <p>Results</p> <p>Overall, a lifetime history of any headaches or migraine was associated with an increased odds of placental abruption (aOR = 1.60; 95% CI 1.16-2.20). A lifetime history of migraine was associated with a 2.14-fold increased odds of placental abruption (aOR = 2.14; 95% CI 1.22-3.75). The odds of placental abruption was 2.11 (95% CI 1.00-4.45) for migraineurs without aura; and 1.59 (95% 0.70-3.62) for migraineurs with aura. A lifetime history of tension-type headache was also increased with placental abruption (aOR = 1.61; 95% CI 1.01-2.57).</p> <p>Conclusions</p> <p>This study adds placental abruption to a growing list of pregnancy complications associated with maternal headache/migraine disorders. Nevertheless, prospective cohort studies are needed to more rigorously evaluate the extent to which migraines and/or its treatments are associated with the occurrence of placental abruption.</p

    Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    No full text
    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34- 72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genomeRevisión por pare

    Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    No full text
    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34- 72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genomeRevisión por pare
    corecore