257 research outputs found

    Toward Guidelines for Research on Human Embryo Models Formed from Stem Cells.

    Get PDF
    Over the past few years, a number of research groups have reported striking progress on the generation of in vitro models from mouse and human stem cells that replicate aspects of early embryonic development. Not only do these models reproduce some key cell fate decisions but, especially in the mouse system, they also mimic the spatiotemporal arrangements of embryonic and extraembryonic tissues that are required for developmental patterning and implantation in the uterus. If such models could be developed for the early human embryo, they would have great potential benefits for understanding early human development, for biomedical science, and for reducing the use of animals and human embryos in research. However, guidelines for the ethical conduct of this line of work are at present not well defined. In this Forum article, we discuss some key aspects of this emerging area of research and provide some recommendations for its ethical oversight

    The pluripotent state in mouse and human

    Get PDF
    In the mouse, naïve pluripotent stem cells (PSCs) are thought to represent the cell culture equivalent of the late epiblast in the preimplantation embryo, with which they share a unique defining set of features. Recent studies have focused on the identification and propagation of a similar cell state in human. Although the capture of an exact human equivalent of the mouse naïve PSC remains an elusive goal, comparative studies spurred on by this quest are lighting the path to a deeper understanding of pluripotent state regulation in early mammalian development

    Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors.

    Get PDF
    Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro

    A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction

    Get PDF
    Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5\u27 splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier

    Esophageal cancer in a young woman with bulimia nervosa: a case report

    Get PDF
    Adenocarcinoma of the esophagus has increased dramatically within the United States and continues to have a poor prognosis despite aggressive treatment. Identifying potential risk factors is critical for the early detection and treatment of this disease. The present case report describes a very young woman who developed adenocarcinoma of the esophagus after only a brief history of bulimia. These findings suggest that even in very young patients, bulimia may represent a risk factor for adenocarcinoma of the esophagus

    L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    Get PDF
    Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream targets of these transcription factors are not well characterized. Furthermore, it remains unknown whether additional novel stem cell factors are involved in the establishment and maintenance of the stem cell state.Here we show that a novel gene, L1TD1 (also known as FLJ10884 or ECAT11), is abundantly expressed in undifferentiated hESC. Differentiation of hESC via embryoid body (EB) formation or BMP4 treatment results in the rapid down-regulation of L1TD1 expression. Furthermore, populations of undifferentiated and differentiated hESC were sorted using the stem cell markers SSEA4 and TRA160. Our results show that L1TD1 is enriched in the SSEA4-positive or TRA160-positive population of hESC. Using chromatin immunoprecipitation we found enriched association of Nanog to the predicted promoter region of L1TD1. Furthermore, siRNA-mediated knockdown of Nanog in hESC also resulted in downregulation of L1TD1 expression. Finally, using luciferase reporter assay we demonstrated that Nanog can activate the L1TD1 upstream promoter region. Altogether, these results provide evidence that L1TD1 is a downstream target of Nanog.Taken together, our results suggest that L1TD1 is a downstream target of Nanog and represents a useful marker for identifying undifferentiated hESC

    International Stem Cell Collaboration: How Disparate Policies between the United States and the United Kingdom Impact Research

    Get PDF
    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations

    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells

    Get PDF
    Background: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. Methodology/Principal Findings: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. Significance: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency

    Cure of ADPKD by Selection for Spontaneous Genetic Repair Events in Pkd1-Mutated iPS Cells

    Get PDF
    Induced pluripotent stem cells (iPSCs) generated by epigenetic reprogramming of personal somatic cells have limited therapeutic capacity for patients suffering from genetic disorders. Here we demonstrate restoration of a genomic mutation heterozygous for Pkd1 (polycystic kidney disease 1) deletion (Pkd1(+/−) to Pkd1(+/R+)) by spontaneous mitotic recombination. Notably, recombination between homologous chromosomes occurred at a frequency of 1∼2 per 10,000 iPSCs. Southern blot hybridization and genomic PCR analyses demonstrated that the genotype of the mutation-restored iPSCs was indistinguishable from that of the wild-type cells. Importantly, the frequency of cyst generation in kidneys of adult chimeric mice containing Pkd1(+/R+) iPSCs was significantly lower than that of adult chimeric mice with parental Pkd1(+/−) iPSCs, and indistinguishable from that of wild-type mice. This repair step could be directly incorporated into iPSC development programmes prior to cell transplantation, offering an invaluable step forward for patients carrying a wide range of genetic disorders

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes
    corecore