43 research outputs found

    The SH3PXD2A-HTRA1 fusion transcript is extremely rare in Norwegian sporadic vestibular schwannoma patients

    Get PDF
    Introduction Vestibular schwannoma (VS) is a benign intracranial tumor in which the underlying genetics is largely uncertain, apart from mutations in the tumor suppressor gene NF2. Alternative tumorigenic mechanisms have been proposed, including a recurrent in-frame fusion transcript of the HTRA1 and SH3PXD2A genes. The gene product of the SH3PXD2A-HTRA1 fusion has been shown to promote proliferation, invasion and resistance to cell death in vitro and tumor growth in vivo. The aim of this study was to replicate the findings and to investigate the frequency of this fusion gene in another cohort of vestibular schwannoma patients. Methods The SH3PXD2A-HTRA1 transcript was synthesized in vitro using PCR and used as a positive control to assess the sensitivity of a real-time PCR assay. This real-time PCR assay was used to search for the presence of the fusion transcript in 121 Norwegian sporadic VS patients. Results The real-time PCR assay showed a high sensitivity and was able to detect as low as ~ 5 copies of the fusion transcript. Out of the 121 investigated tumors, only 1 harbored the SH3PXD2A-HTRA1 fusion. Conclusion Even though the SH3PXD2A-HTRA1 fusion has been shown to be a driver of tumorigenesis, our results suggest that it is a rare event in our VS patients. Further investigation is warranted in order to elucidate whether our results represent an extreme, and if the fusion is present also in other neoplasms.publishedVersio

    Genetic alterations associated with malignant transformation of sporadic vestibular schwannoma

    Get PDF
    Introduction: Malignant peripheral nerve sheath tumor of the vestibulocochlear nerve (VN-MPNST) is exceedingly rare and carries a poor prognosis. Little is known about its underlying genetics and in particular the process of malignant transformation. There is an ongoing debate on whether the transformation is initiated by ionizing radiation. We present here the analysis and comparison of two post-radiation VN-MPNST and one undergoing spontaneous transformation. Methods: Four tumors from three patients (radiation-naïve vestibular schwannoma before (VS) and after (VN-MPNST) malignant transformation in addition to two post-radiation VN-MPNST) were subjected to DNA whole-genome microarray and whole-exome sequencing and tumor-specific mutations were called. Mutational signatures were characterized using MuSiCa. Results: The tumor genomes were characterized predominantly by copy-number aberrations with 36–81% of the genome affected. Even the VS genome was grossly aberrated. The spontaneous malignant transformation was characterized by a near-total whole-genome doubling, disappearance of NF2 mutation and new mutations in three cancer-related genes (GNAQ, FOXO4 and PDGFRB). All tumors had homozygous loss of the tumor suppressor CDKN2A. Neither mutational signature nor copy number profile was associated with ionizing radiation. Conclusion: The VN-MPNST genome in our cases is characterized by large copy-number aberrations and homozygous deletion of CDKN2A. Our study demonstrates a VS with genetic alterations similar to its malignant counterpart, suggesting the existence of premalignant VS. No consistent mutational signature was associated with ionizing radiation.publishedVersio

    Chip protein U-box domain truncation affects Purkinje neuron morphology and leads to behavioral changes in zebrafish

    Get PDF
    The ubiquitin ligase CHIP (C-terminus of Hsc70-interacting protein) is encoded by STUB1 and promotes ubiquitination of misfolded and damaged proteins. CHIP deficiency has been linked to several diseases, and mutations in the human STUB1 gene are associated with recessive and dominant forms of spinocerebellar ataxias (SCAR16/SCA48). Here, we examine the effects of impaired CHIP ubiquitin ligase activity in zebrafish (Danio rerio). We characterized the zebrafish stub1 gene and Chip protein, and generated and characterized a zebrafish mutant causing truncation of the Chip functional U-box domain. Zebrafish stub1 has a high degree of conservation with mammalian orthologs and was detected in a wide range of tissues in adult stages, with highest expression in brain, eggs, and testes. In the brain, stub1 mRNA was predominantly detected in the cerebellum, including the Purkinje cell layer and granular layer. Recombinant wild-type zebrafish Chip showed ubiquitin ligase activity highly comparable to human CHIP, while the mutant Chip protein showed impaired ubiquitination of the Hsc70 substrate and Chip itself. In contrast to SCAR16/SCA48 patients, no gross cerebellar atrophy was evident in mutant fish, however, these fish displayed reduced numbers and sizes of Purkinje cell bodies and abnormal organization of Purkinje cell dendrites. Mutant fish also had decreased total 26S proteasome activity in the brain and showed behavioral changes. In conclusion, truncation of the Chip U-box domain leads to impaired ubiquitin ligase activity and behavioral and anatomical changes in zebrafish, illustrating the potential of zebrafish to study STUB1-mediated diseases.publishedVersio

    Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions

    Get PDF
    : The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested

    The intronic BRCA1 c.5407-25T>A variant causing partly skipping of exon 23—a likely pathogenic variant with reduced penetrance?

    Get PDF
    Rare sequence variants in the non-coding part of the BRCA genes are often reported as variants of uncertain significance (VUS), which leave patients and doctors in a challenging position. The aim of this study was to determine the pathogenicity of the BRCA1 c.5407-25T>A variant found in 20 families from Norway, France and United States with suspected hereditary breast and ovarian cancer. This was done by combining clinical and family information with allele frequency data, and assessment of the variant’s effect on mRNA splicing. Mean age at breast (n = 12) and ovarian (n = 11) cancer diagnosis in female carriers was 49.9 and 60.4 years, respectively. The mean Manchester score in the 20 families was 16.4. The allele frequency of BRCA1 c.5407-25T>A was 1/64,566 in non-Finnish Europeans (gnomAD database v2.1.1). We found the variant in 1/400 anonymous Norwegian blood donors and 0/784 in-house exomes. Sequencing of patient-derived cDNA from blood, normal breast and ovarian tissue showed that BRCA1 c.5407-25T>A leads to skipping of exon 23, resulting in frameshift and protein truncation: p.(Gly1803GlnfsTer11). Western blot analysis of transiently expressed BRCA1 proteins in HeLa cells showed a reduced amount of the truncated protein compared with wild type. Noteworthily, we found that a small amount of full-length transcript was also generated from the c.5407-25T>A allele, potentially explaining the intermediate cancer burden in families carrying this variant. In summary, our results show that BRCA1 c.5407-25T>A leads to partial skipping of exon 23, and could represent a likely pathogenic variant with reduced penetrance.publishedVersio

    DNA methylation changes in response to neoadjuvant chemotherapy are associated with breast cancer survival

    Get PDF
    Background: Locally advanced breast cancer is a heterogeneous disease with respect to response to neoadjuvant chemotherapy (NACT) and survival. It is currently not possible to accurately predict who will benefit from the specific types of NACT. DNA methylation is an epigenetic mechanism known to play an important role in regulating gene expression and may serve as a biomarker for treatment response and survival. We investigated the potential role of DNA methylation as a prognostic marker for long-term survival (> 5 years) after NACT in breast cancer. Methods: DNA methylation profiles of pre-treatment (n = 55) and post-treatment (n = 75) biopsies from 83 women with locally advanced breast cancer were investigated using the Illumina HumanMethylation450 BeadChip. The patients received neoadjuvant treatment with epirubicin and/or paclitaxel. Linear mixed models were used to associate DNA methylation to treatment response and survival based on clinical response to NACT (partial response or stable disease) and 5-year survival, respectively. LASSO regression was performed to identify a risk score based on the statistically significant methylation sites and Kaplan–Meier curve analysis was used to estimate survival probabilities using ten years of survival follow-up data. The risk score developed in our discovery cohort was validated in an independent validation cohort consisting of paired pre-treatment and post-treatment biopsies from 85 women with locally advanced breast cancer. Patients included in the validation cohort were treated with either doxorubicin or 5-FU and mitomycin NACT. Results: DNA methylation patterns changed from before to after NACT in 5-year survivors, while no significant changes were observed in non-survivors or related to treatment response. DNA methylation changes included an overall loss of methylation at CpG islands and gain of methylation in non-CpG islands, and these changes affected genes linked to transcription factor activity, cell adhesion and immune functions. A risk score was developed based on four methylation sites which successfully predicted long-term survival in our cohort (p = 0.0034) and in an independent validation cohort (p = 0.049). Conclusion: Our results demonstrate that DNA methylation patterns in breast tumors change in response to NACT. These changes in DNA methylation show potential as prognostic biomarkers for breast cancer survival.publishedVersio

    BRCA1 Norway: comparison of classifcation for BRCA1 germline variants detected in families with suspected hereditary breast and ovarian cancer between different laboratories

    Get PDF
    Pathogenic germline variants in Breast cancer susceptibility gene 1 (BRCA1) predispose carriers to hereditary breast and ovarian cancer (HBOC). Through genetic testing of patients with suspected HBOC an increasing number of novel BRCA1 variants are discovered. This creates a growing need to determine the clinical significance of these variants through correct classification (class 1–5) according to established guidelines. Here we present a joint collection of all BRCA1 variants of class 2–5 detected in the four diagnostic genetic laboratories in Norway. The overall objective of the study was to generate an overview of all BRCA1 variants in Norway and unveil potential discrepancies in variant interpretation between the hospitals, serving as a quality control at the national level. For a subset of variants, we also assessed the change in classification over a ten-year period with increasing information available. In total, 463 unique BRCA1 variants were detected. Of the 126 variants found in more than one hospital, 70% were interpreted identically, while 30% were not. The differences in interpretation were mainly by one class (class 2/3 or 4/5), except for one larger discrepancy (class 3/5) which could affect the clinical management of patients. After a series of digital meetings between the participating laboratories to disclose the cause of disagreement for all conflicting variants, the discrepancy rate was reduced to 10%. This illustrates that variant interpretation needs to be updated regularly, and that data sharing and improved national inter-laboratory collaboration greatly improves the variant classification and hence increases the accuracy of cancer risk assessment.publishedVersio

    Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies

    Get PDF
    Purpose This article provides a review of the transcriptomic expression profiling studies that have been performed on meningiomas so far. We discuss some future prospects and challenges ahead in the field of gene expression profiling. Methods We performed a systematic search in the PubMed and EMBASE databases in May 2010 using the following search terms alone or in combination: “meningioma”, “microarray analysis”, “oligonucleotide array sequence analysis”, or “gene expression profiling”. Only original research articles in English that had used RNA hybridized to high-resolution microarray chips to generate gene expression profiles were included. Results We identified 13 articles matching the inclusion criteria. All studies had been performed during the last decade. Conclusions The main results of the studies can be grouped in three categories: (1) several groups have identified meningioma-specific genes and genes associated with the three WHO grades, and the main histological subtypes of grade I meningiomas; (2) one publication has shown that the general transcription profile of samples of all WHO grades differs in vivo and in vitro; (3) one report provides evidence that microarray technology can be used in an automated fashion to classify tumors. Due to lack of consensus on how microarray data are presented, possible general trends found across the studies are difficult to extract. This could obstruct the discovery of important genes and pathways universally involved in meningioma biology

    Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAttention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5-BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10-21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.Innovative Medicines Initiative Joint Undertaking from the European Union's Seventh Framework Programme (EU-FP7/2007-2013) European Union (EU) EU-FP7-People-2011-IAPP grant Research Council of Norway KG Jebsen Stiftelsen South-East Norway Health Authorit

    Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder

    Get PDF
    Publisher's version (Ăștgefin grein).Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5–BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10−21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.We are grateful to the participants and we thank the staff at the Research Recruitment Center. We also thank the staff at deCODE genetics core facilities and all our colleagues for their important contribution to this work. We are grateful to the Benefit Society for Children with Disabilities (StyrktarfĂ©lag LamaĂ°ra og FatlaĂ°ra; SLF) for their participation. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreements’ no. 115008 (NEWMEDS) and no. 115300 (EUAIMS), of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (EU-FP7/2007–2013), from EU-FP7 grants no. 602450 (IMAGEMEND) and no. 502805 (Aggressotype), EU-FP7-People-2011-IAPP grant no. 286213 (PsychDPC), and The Research Council of Norway (#226971, 229129, 223273, 213694, 248778), the KG Jebsen Stiftelsen (SKGJ-MED-002 and SKGJ-MED-008), and The South-East Norway Health Authority (#2012–132).Peer Reviewe
    corecore