61 research outputs found

    Hexaene Derivatives of Nystatin Produced as a Result of an Induced Rearrangement within the nysC Polyketide Synthase Gene in S. noursei ATCC 11455

    Get PDF
    AbstractGenetic manipulation of the polyketide synthase (PKS) gene nysC involved in the biosynthesis of the tetraene antifungal antibiotic nystatin yielded a recombinant strain producing hexaene nystatin derivatives. Analysis of one such compound, S48HX, by LC-MS/MS suggested that it comprises a 36-membered macrolactone ring completely decorated by the post-PKS modification enzymes. Further characterization by bioassay has shown that S48HX exhibits antifungal activity. Genetic analysis of the hexaene-producing mutant revealed an in-frame deletion within the nysC gene via recombination between two homologous ketoreductase domain-encoding sequences. Apparently, this event resulted in the elimination of one complete module from NysC PKS, subsequently leading to the production of the nystatin derivative with a contracted macrolactone ring. These results represent the first example of manipulation of a PKS gene for the biosynthesis of a polyene antibiotic

    Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2)

    Get PDF
    Background: Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2). Results: By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism. Conclusions: The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA

    Biosynthesis of Macrolactam BE-14106 Involves Two Distinct PKS Systems and Amino Acid Processing Enzymes for Generation of the Aminoacyl Starter Unit

    Get PDF
    SummaryBE-14106 is a macrocyclic lactam with an acyl side chain previously identified in a marine-derived Streptomyces sp. The gene cluster for BE-14106 biosynthesis was cloned from a Streptomyces strain newly isolated from marine sediments collected in the Trondheimsfjord (Norway). Bioinformatics and experimental analyses of the genes in the cluster suggested an unusual mechanism for assembly of the molecule. Biosynthesis of the aminoacyl starter apparently involves the concerted action of a distinct polyketide synthase (PKS) system and several enzymes that activate and process an amino acid. The resulting starter unit is loaded onto a second PKS complex, which completes the synthesis of the macrolactam ring. Gene inactivation experiments, enzyme assays with heterologously expressed proteins, and feeding studies supported the proposed model for the biosynthesis and provided new insights into the assembly of macrolactams with acyl side chain

    Impaired NDRG1 functions in Schwann cells cause demyelinating neuropathy in a dog model of Charcot-Marie-Tooth type 4D

    Get PDF
    Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p < 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-MarieTooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

    Integrative omics-analysis of lipid metabolism regulation by peroxisome proliferator-activated receptor a and b agonists in male Atlantic cod

    Get PDF
    Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.The study was carried out as part of the project “dCod 1.0: decoding systems toxicology of Atlantic cod” financed by the Norwegian Research Council (project no. 248840) and is part of Centre for Digital Life Norway (DLN), financed by the Research Council of Norway (project no. 248810). This work was also part of the iCod 2.0 project (project no. 244564) financed by the Norwegian Research Council. The UPLC-HRMS analysis was performed in collaboration with another project in DLN, AurOmega (project no. 269432). The Genomics Core Facility (GCF) at the University of Bergen, which is a part of the NorSeq consortium, provided services on RNA sequencing; GCF is supported in part by major grants from the Research Council of Norway (grant no. 245979/F50) and Bergen Research Foundation (BFS) (grant no. BFS2017TMT04 and BFS2017TMT08).Peer reviewe

    Development and validation of a finite element software facilitating large-displacement aeroelastic analysis of wind turbines

    Get PDF
    This thesis establishes necessary theory for the geometrically nonlinear dynamic analysis of spatial beam structures by the corotational formulation of finite el- ements. By extending an existing framework that is capable of finite element modeling as well as computing aerodynamic forces, a code is developed that facil- itates the aeroelastic analysis of wind turbines, where the effects of large rotations and deflections of the blades are captured. Verification of the code is carried out first by basic tests, and then by comparing the computed response of a wind tur- bine model with other codes for wind turbine design. Results are shown to be in good agreement with other codes

    An assessment of serial co-cultivation approach for generating novel Zymomonas mobilis strains

    No full text
    Objective The alphaproteobacterium Zymomonas mobilis is an efficient ethanol producer, and Z. mobilis-based biorefinery shows great potential for biofuel production. Serial co-cultivation is an emerging approach that promotes inter-species interactions which can improve or rewire the metabolic features in industrially useful microorganisms by inducing frequent mutations. We applied this method to assess if it improves or rewires the desirable physiological features of Z. mobilis, especially ethanol production. Results We performed serial co-culture of Z. mobilis with the baker’s yeast, Saccharomyces cerevisiae. We observed filamentation of Z. mobilis cells in the co-culture, indicating that the Z. mobilis cells were exposed to stress due to the presence of a competitor. After 50 times of serial transfers, we characterized the generated Z. mobilis strains, showing that long term co-culture did not drive significant changes in either the growth or profile of excreted metabolites in the generated strains. In line with this, whole genome sequencing of the generated Z. mobilis strains revealed only minor genetic variations from the parental strain. 50 generations of Z. mobilis monoculture did not induce morphological changes or any significant genetic variations. The result indicates that the method needs to be carefully optimized for Z. mobilis strain improvement

    Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through centralmetabolic pathways in response to inactivation of the anti-sigma factor MucA.

    Get PDF
    BackgroundThe bacterium Pseudomonas fluorescens switches to an alginate-producing phenotype when the pleiotropic anti-sigma factor MucA is inactivated. The inactivation is accompanied by an increased biomass yield on carbon sources when grown under nitrogen-limited chemostat conditions. A previous metabolome study showed significant changes in the intracellular metabolite concentrations, especially of the nucleotides, in mucA deletion mutants compared to the wild-type. In this study, the P. fluorescens SBW25 wild-type and an alginate non-producing mucA- ΔalgC double-knockout mutant are investigated through model-based 13C-metabolic flux analysis (13C-MFA) to explore the physiological consequences of MucA inactivation at the metabolic flux level. Intracellular metabolite extracts from three carbon labelling experiments using fructose as the sole carbon source are analysed for 13C-label incorporation in primary metabolites by gas and liquid chromatography tandem mass spectrometry.ResultsFrom mass isotopomer distribution datasets, absolute intracellular metabolic reaction rates for the wild type and the mutant are determined, revealing extensive reorganisation of carbon flux through central metabolic pathways in response to MucA inactivation. The carbon flux through the Entner-Doudoroff pathway was reduced in the mucA- ΔalgC mutant, while flux through the pentose phosphate pathway was increased. Our findings also indicated flexibility of the anaplerotic reactions through down-regulation of the pyruvate shunt in the mucA- ΔalgC mutant and up-regulation of the glyoxylate shunt.ConclusionsAbsolute metabolic fluxes and metabolite levels give detailed, integrated insight into the physiology of this industrially, medically and agriculturally important bacterial species and suggest that the most efficient way of using a mucA- mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation
    corecore