184 research outputs found

    Efficiency of nearly periodic structures for mitigation of ground vibration

    Get PDF
    Periodic structures are known to produce passbands and stopbands for propagation of vibration energy within the frequency domain. Sources vibrating harmonically at a frequency within a passband can lead to propagation of energy through propagating modes over long distances. However, sources vibrating at a frequency within a stopband excite only nearfields in the form of attenuating and evanescent modes, and the energy decays with distance. The decay phenomena are due to destructive interference of waves reflected and scattered by interfaces or obstacles placed periodically within or between the repeated cells of the structure. For a truly periodic structure, the vibration level within a stopband goes toward zero after infinitely many repetitions of the cell. For example, employing a two-dimensional model, Andersen [1] found that stopbands for ground vibration in the low-frequency range can be introduced by periodic inclusions or changes to the ground surface geometry. However, for vibration mitigation in the context of real civil-engineering problems related to ground-borne noise from railways, for example, the excitation is not strictly harmonic and a steady state of the response is usually not achieved. Further, only a limited number of repetitions of wave impedance blocks or barriers can be made in practice, and in three dimensions, the inclusions have finite extent in the direction orthogonal to the array. Similarly to the work by Andersen et al. [2], this paper addresses the question whether repeated structures of nearly periodic nature can be used to mitigate vibrations caused by non-stationary sources. For this purpose, wave impedance blocks with finite numbers of repetitions are compared to their truly periodic counterparts. Firstly, a two-dimensional study is conducted with focus on studying the nature of wave modes in a periodic array of wave impeding blocks. Secondly, three-dimensional analysis is performed in the frequency domain, focusing on the insertion loss provided by increasing numbers of repetitions of blocks with different height and embedment. Finally, the insertion loss provided by nearly periodic structures is examined, and the mitigation efficiency of wave-impeding-block arrays is quantified in the case of transient loads

    Environmental vibration reduction utilizing an array of mass scatterers

    Get PDF
    © 2017 The Authors. Published by Elsevier Ltd. Ground vibration generated by rail and road traffic is a major source of environmental noise and vibration pollution in the low-frequency range. A promising and cost effective mitigation method can be the use of heavy masses placed as an array on the ground surface near the road or track (e.g. concrete or stone blocks, specially designed brick walls, etc.). This work concerns the effectiveness of such blocking masses. A semi-analytical lumped-parameter method is utilized, assuming that the blocks are point masses situated on an elastic half-space. The work is enhanced by examples highlighting advantages and disadvantages of single-mass scatterers and multiple-mass scatterers

    Matching experimental and three dimensional numerical models for structural vibration problems with uncertainties

    Get PDF
    © 2017 The Author(s) The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty

    Negotiating stance within discourses of class: reactions to Benefits Street

    Get PDF
    In this article, we examine the way that audiences respond to particular representations of poverty. Using clips from the Channel 4 television programme Benefits Street we conducted focus groups in four locations across the UK, working with people from different socioeconomic backgrounds who had different experiences with the benefits system. Benefits Street (2014) is an example of reality television where members of the public are followed by film crews as they perform everyday tasks and routines. Our choice to focus on this particular programme was prompted by the huge media response that it received when it was broadcast; Benefits Street generated 950 complaints to regulatory watchdog Ofcom (2014) and was referred to as ‘poverty porn’ (Clark, 2014). We focus on the way that viewers of this programme produce assessments of those on benefits, analysing the discursive strategies used by our participants when evaluating representations of those on benefits. Specifically, we consider how the participants in our study construct their own stance and attribute stance to others through naming and agency practices, the negotiation of opinion, and stake inoculation. We invited our participants to judge the people they saw on screen, but they went beyond this. They used clips of the programme as stimuli to collaboratively construct an overarchingly-negative stereotype of those on benefits. We conclude that Benefits Street is not just an entertainment programme, but is rather a site for ideological construction and the perpetuation of existing stereotypes about benefit claimants. The programme (and others like it) invites negative evaluations of those on benefits and is thus a worthy site for critical linguistic analysis

    Re-reading in Stylistics

    Get PDF
    Cognitive stylistics is primarily concerned with the cognitive processes – mental simulations – experienced by readers. Most cognitive stylisticians agree that experiences of reading texts are dynamic and flexible. Changes in the context of reading, our attentional focus on a given day, our extra background knowledge about the text, and so on, are all factors that contribute to our experience of a fictional world. A second reading of a text is a different experience to a first reading. As researchers begin to systematically distinguish between the ‘solitary’ and ‘social’ readings that constitute reading as a phenomenon (Peplow et al., 2016), the relationship between multiple readings and the nature of their processing become increasingly pertinent. In order to explore this relationship, firstly we examine the different ways in which re-reading has previously been discussed in stylistics, grounding our claims in an empirical analysis of articles published in key stylistics journals over the past two decades. Next, we draw on reader response data from an online questionnaire in order to assess the role of re-reading and the motivations that underpin it. Finally, we describe an exercise for the teaching of cognitive stylistics, specifically applying schema theory in literary linguistic analysis (Cook, 1994), which illustrates the need to distinguish between readings as part of an analysis. Through these three sections we argue that our experiences of texts should be considered diachronically, and propose that the different readings that make up an analysis of a text should be given greater attention in stylistic research and teaching

    Identification of Pathogenicity-Related Genes in the Vascular Wilt Fungus Verticillium dahliae by Agrobacterium tumefaciens-Mediated T-DNA Insertional Mutagenesis

    Get PDF
    Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacteriumtumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae

    Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation.

    Get PDF
    Finding heterogeneous catalysts that are superior to homogeneous ones for selective catalytic transformations is a major challenge in catalysis. Here, we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts. This finding has a big potential in the production of aldehydes for the fine chemical industry. Monte Carlo and density functional theory simulations combined with kinetic models show that the micropores of MOFs with UMCM-1 and MOF-74 topologies increase the olefins density beyond neat conditions while partially preventing the adsorption of syngas leading to high branched selectivity. The easy experimental protocol and the chemical and structural flexibility of MOFs will attract the interest of the fine chemical industries towards the design of heterogeneous processes with exceptional selectivity
    corecore