1,076 research outputs found
âI Canât See How People Could Walk Through That Exhibit and Not Be Forever Changedâ: A Qualitative Analysis Exploring the Use of Art in Research Dissemination
Background: Art can be a strong advocacy tool; it can be used to amplify the voices of marginalized communities and can change peopleâs perceptions of the world and others in it. In 2018, an art exhibit at Jefferson University included the cardboard signs of people who panhandle in Philadelphia as well as excerpts from in-depth interviews with those who panhandle to highlight their lived experiences. While the team published an article about this work, the purpose of this follow-up study is to explore the lasting impact of the exhibit experience on attendeesâ perceptions of people who panhandle.
Methods: Fourteen attendees of the âSigns of Humanityâ exhibit were interviewed 18âmonths later to explore their recollection of their visit and perceptions of the panhandling community. Interviews were recorded, transcribed, and thematic codes were developed in two ways: a priori codes based on literature, and through line-by-line reading of transcripts.
Results: Directed content analysis showed three main areas in which the exhibit resonated with participants: emotional, behavioral, and educational resonance, in addition to a cross-cutting âstickyâ theme, referring to the memorable long-term value of the exhibit.
Conclusion: This study demonstrates that integrating art into the dissemination phase of research is effective in imbuing long-lasting emotional/behavioral responses in a way that is both accessible and provocative for the lay and scientific communities. This study adds to the body of evidence supporting the efficacy of art as an education tool and supports its use as a way to amplify the voices of marginalized communities
A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b
Exoplanets orbiting close to their parent stars could lose some fraction of
their atmospheres because of the extreme irradiation. Atmospheric mass loss
primarily affects low-mass exoplanets, leading to suggest that hot rocky
planets might have begun as Neptune-like, but subsequently lost all of their
atmospheres; however, no confident measurements have hitherto been available.
The signature of this loss could be observed in the ultraviolet spectrum, when
the planet and its escaping atmosphere transit the star, giving rise to deeper
and longer transit signatures than in the optical spectrum. Here we report that
in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese
436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69%
optical transit depth. The ultraviolet transits repeatedly start ~2 h before,
and end >3 h after the ~1 h optical transit, which is substantially different
from one previous claim (based on an inaccurate ephemeris). We infer from this
that the planet is surrounded and trailed by a large exospheric cloud composed
mainly of hydrogen atoms. We estimate a mass-loss rate in the range of
~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a
Neptune-like planet in the lifetime of the parent star, but would have been
much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12
figures, 2 table
Mechanically ventilated COVID-19 patients admitted to the intensive care unit in the United States with or without respiratory failure secondary to COVID-19 pneumonia: a retrospective comparison of characteristics and outcomes
Background There is increasing heterogeneity in the clinical phenotype of patients admitted to the intensive care unit (ICU) with coronavirus disease 2019 (COVID-19,) and reasons for mechanical ventilation are not limited to COVID pneumonia. We aimed to compare the characteristics and outcomes of intubated patients admitted to the ICU with the primary diagnosis of acute hypoxemic respiratory failure (AHRF) from COVID-19 pneumonia to those patients admitted for an alternative diagnosis. Methods Retrospective cohort study of adults with confirmed SARS-CoV-2 infection admitted to nine ICUs between March 18, 2020, and April 30, 2021, at an urban university institution. We compared characteristics between the two groups using appropriate statistics. We performed logistic regression to identify risk factors for death in the mechanically ventilated COVID-19 population. Results After exclusions, the final sample consisted of 319 patients with respiratory failure secondary to COVID pneumonia and 150 patients intubated for alternative diagnoses. The former group had higher ICU and hospital mortality rates (57.7% vs. 36.7%, P<0.001 and 58.9% vs. 39.3%, P<0.001, respectively). Patients with AHRF secondary to COVID-19 pneumonia also had longer ICU and hospital lengths-of-stay (12 vs. 6 days, P<0.001 and 20 vs. 13.5 days, P=0.001). After risk-adjustment, these patients had 2.25 times higher odds of death (95% confidence interval, 1.42â3.56; P=0.001). Conclusions Mechanically ventilated COVID-19 patients admitted to the ICU with COVID-19-associated respiratory failure are at higher risk of hospital death and have worse ICU utilization outcomes than those whose reason for admission is unrelated to COVID pneumonia
Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
This study is a first attempt to quantify the non-photosynthetic vegetation (NPV) fraction at a semiarid grassland site located in Kenya. We have first applied a model already developed and calibrated for crop analysis to predict grassland NPV from field spectral reflectance data. The second step will be to refine the model and apply it to the PRISMA image to obtain a quantitative map
Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on its redshift
We report the first detection of very-high-energy (VHE) gamma-ray emission
above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The
photon spectrum above 140 GeV measured by VERITAS is well described by a power
law with a photon index of 3.8 +- 0.5_stat +- 0.3_syst and a flux normalization
at 200 GeV of (5.1 +- 0.9_stat +- 0.5_syst) x 10^{-11} TeV^-1 cm^-2 s^-1, where
stat and syst denote the statistical and systematical uncertainty,
respectively. The VHE flux is steady over the observation period between MJD
54881 and 55003 (2009 February 19 to June 21). Flux variability is also not
observed in contemporaneous high energy observations with the Fermi Large Area
Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from
the Swift XRT and MDM observatory, respectively. The broadband spectral energy
distribution (SED) is well described by a one-zone synchrotron self-Compton
(SSC) model favoring a redshift of less than 0.1. Using the photon index
measured with Fermi in combination with recent extragalactic background light
(EBL) absorption models it can be concluded from the VERITAS data that the
redshift of PKS 1424+240 is less than 0.66.Comment: accepted for publication, Ap
Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337)
Context: The Transiting Exoplanet Survey Satellite (TESS) is revolutionising the search for planets orbiting bright and nearby stars. In sectors 3 and 4, TESS observed TOI-402 (TIC-120896927), a bright V = 9.1 K1 dwarf also known as HD 15337, and found two transiting signals with periods of 4.76 and 17.18 days and radii of 1.90 and 2.21 Râ, respectively. This star was observed prior to the TESS detection as part of the radial-velocity (RV) search for planets using the HARPS spectrometer, and 85 precise RV measurements were obtained before the launch of TESS over a period of 14 yr.
Aims: In this paper, we analyse the HARPS RV measurements in hand to confirm the planetary nature of these two signals.
Methods: HD 15337 happens to present a stellar activity level similar to the Sun, with a magnetic cycle of similar amplitude and RV measurements that are affected by stellar activity. By modelling this stellar activity in the HARPS radial velocities using a linear dependence with the calcium activity index log(RHKâČ), we are able, with a periodogram approach, to confirm the periods and the planetary nature of TOI-402.01 and TOI-402.02. We then derive robust estimates from the HARPS RVs for the orbital parameters of these two planets by modelling stellar activity with a Gaussian process and using the marginalised posterior probability density functions obtained from our analysis of TESS photometry for the orbital period and time of transit.
Results: By modelling TESS photometry and the stellar host characteristics, we find that TOI-402.01 and TOI-402.02 have periods of 4.75642 ± 0.00021 and 17.1784 ± 0.0016 days and radii of 1.70 ± 0.06 and 2.52 ± 0.11 Râ (precision 3.6 and 4.2%), respectively. By analysing the HARPS RV measurements, we find that those planets are both super-Earths with masses of 7.20 ± 0.81 and 8.79 ± 1.68 Mâ (precision 11.3 and 19.1%), and small eccentricities compatible with zero at 2Ï.
Conclusions: Although having rather similar masses, the radii of these two planets are very different, putting them on different sides of the radius gap. By studying the temporal evolution under X-ray and UV (XUV) driven atmospheric escape of the TOI-402 planetary system, we confirm, under the given assumptions, that photo-evaporation is a plausible explanation for this radius difference. Those two planets, being in the same system and therefore being in the same irradiation environment are therefore extremely useful for comparative exoplanetology across the evaporation valley and thus bring constraints on the mechanisms responsible for the radius gap
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
- âŠ