760 research outputs found

    Spectral density of generalized Wishart matrices and free multiplicative convolution

    Full text link
    We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, W=XXW=XX^{\dagger}, where XX stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free multiplicative powers of the Marchenko-Pastur (MP) distribution, MPs{\rm MP}^{\boxtimes s}, which for an integer ss yield Fuss-Catalan distributions corresponding to a product of ss independent square random matrices, X=X1XsX=X_1\cdots X_s. New formulae for the level densities are derived for s=3s=3 and s=1/3s=1/3. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.Comment: 10 latex pages including 4 figures, Ver 4, minor improvements and references updat

    Dobinski-type relations: Some properties and physical applications

    Full text link
    We introduce a generalization of the Dobinski relation through which we define a family of Bell-type numbers and polynomials. For all these sequences we find the weight function of the moment problem and give their generating functions. We provide a physical motivation of this extension in the context of the boson normal ordering problem and its relation to an extension of the Kerr Hamiltonian.Comment: 7 pages, 1 figur

    Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem

    Full text link
    We consider the numbers arising in the problem of normal ordering of expressions in canonical boson creation and annihilation operators. We treat a general form of a boson string which is shown to be associated with generalizations of Stirling and Bell numbers. The recurrence relations and closed-form expressions (Dobiski-type formulas) are obtained for these quantities by both algebraic and combinatorial methods. By extensive use of methods of combinatorial analysis we prove the equivalence of the aforementioned problem to the enumeration of special families of graphs. This link provides a combinatorial interpretation of the numbers arising in this normal ordering problem.Comment: 10 pages, 5 figure

    Dobinski-type relations and the Log-normal distribution

    Full text link
    We consider sequences of generalized Bell numbers B(n), n=0,1,... for which there exist Dobinski-type summation formulas; that is, where B(n) is represented as an infinite sum over k of terms P(k)^n/D(k). These include the standard Bell numbers and their generalizations appearing in the normal ordering of powers of boson monomials, as well as variants of the "ordered" Bell numbers. For any such B we demonstrate that every positive integral power of B(m(n)), where m(n) is a quadratic function of n with positive integral coefficients, is the n-th moment of a positive function on the positive real axis, given by a weighted infinite sum of log-normal distributions.Comment: 7 pages, 2 Figure

    Factors that determine the effectiveness of peer interventions in prisons in England and Wales

    Get PDF
    Epidemiological assessment of the prison population globally shows undeniable health need, with research evidence consistently demonstrating that the prevalence of ill health is higher than rates reported in the wider community. Since a meeting convened by the World Health Organisation in the mid-1990s, prisons have been regarded as legitimate settings for health promotion and a myriad of interventions have been adopted to address prisoners’ health and social need. Peer-based approaches have been a common health intervention used within the prison system, but despite their popularity little evidence exists on the approach. This paper presents findings from an expert symposium – part of a wider study which included a systematic review – designed to gather expert opinion on whether and how peer–based approaches work within prisons and if they can contribute to improving the health of prisoners. Experts were selected from various fields including the prison service, academic research and third sector organisations. Expert evidence suggested that the magnitude of success of peer interventions in prison settings is contingent on understanding the contextual environment and a recognition that peer interventions are co-constructed with prison staff at all levels of the organisation. Implications for developing peer-based interventions in prison are given which assist in developing the concept, theory and practice of the health promoting prison

    Exponential Operators, Dobinski Relations and Summability

    Get PDF
    We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multivariate Bell polynomials which enable us to understand the meaning of perturbation-like expansions of exponential operators. Such expansions, obtained as formal power series, are everywhere divergent but the Pade summation method is shown to give results which very well agree with exact solutions got for simplified quantum models of the one mode bosonic systems.Comment: Presented at XIIth Central European Workshop on Quantum Optics, Bilkent University, Ankara, Turkey, 6-10 June 2005. 4 figures, 6 pages, 10 reference

    Laguerre-type derivatives: Dobinski relations and combinatorial identities

    Get PDF
    We consider properties of the operators D(r,M)=a^r(a^\dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^\dag are boson annihilation and creation operators respectively, satisfying [a,a^\dag]=1. We obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation which generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.Comment: 14 pages, 1 figur

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    Levy stable distributions via associated integral transform

    Full text link
    We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{\alpha}(x), 0 \leq x < \infty, 0 < \alpha < 1. We demonstrate that the knowledge of one such a distribution g_{\alpha}(x) suffices to obtain exactly g_{\alpha^{p}}(x), p=2, 3,... Similarly, from known g_{\alpha}(x) and g_{\beta}(x), 0 < \alpha, \beta < 1, we obtain g_{\alpha \beta}(x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For \alpha rational, \alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g_{l/k}(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.Comment: 12 pages, typos removed, references adde

    Generating random density matrices

    Full text link
    We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi--partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N \to \infty, by the Marchenko-Pastur distribution.Comment: 13 pages in latex with 8 figures include
    corecore