We study various methods to generate ensembles of random density matrices of
a fixed size N, obtained by partial trace of pure states on composite systems.
Structured ensembles of random pure states, invariant with respect to local
unitary transformations are introduced. To analyze statistical properties of
quantum entanglement in bi-partite systems we analyze the distribution of
Schmidt coefficients of random pure states. Such a distribution is derived in
the case of a superposition of k random maximally entangled states. For another
ensemble, obtained by performing selective measurements in a maximally
entangled basis on a multi--partite system, we show that this distribution is
given by the Fuss-Catalan law and find the average entanglement entropy. A more
general class of structured ensembles proposed, containing also the case of
Bures, forms an extension of the standard ensemble of structureless random pure
states, described asymptotically, as N \to \infty, by the Marchenko-Pastur
distribution.Comment: 13 pages in latex with 8 figures include