We consider properties of the operators D(r,M)=a^r(a^\dag a)^M (which we call
generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and
a^\dag are boson annihilation and creation operators respectively, satisfying
[a,a^\dag]=1. We obtain explicit formulas for the normally ordered form of
arbitrary Taylor-expandable functions of D(r,M) with the help of an operator
relation which generalizes the Dobinski formula. Coherent state expectation
values of certain operator functions of D(r,M) turn out to be generating
functions of combinatorial numbers. In many cases the corresponding
combinatorial structures can be explicitly identified.Comment: 14 pages, 1 figur