87 research outputs found

    Modeling the competition between lung metastases and the immune system using agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Triplex cell vaccine is a cancer cellular vaccine that can prevent almost completely the mammary tumor onset in HER-2/neu transgenic mice. In a translational perspective, the activity of the Triplex vaccine was also investigated against lung metastases showing that the vaccine is an effective treatment also for the cure of metastases. A future human application of the Triplex vaccine should take into account several aspects of biological behavior of the involved entities to improve the efficacy of therapeutic treatment and to try to predict, for example, the outcomes of longer experiments in order to move faster towards clinical phase I trials. To help to address this problem, MetastaSim, a hybrid Agent Based - ODE model for the simulation of the vaccine-elicited immune system response against lung metastases in mice is presented. The model is used as in silico wet-lab. As a first application MetastaSim is used to find protocols capable of maximizing the total number of prevented metastases, minimizing the number of vaccine administrations.</p> <p>Results</p> <p>The model shows that it is possible to obtain "in silico" a 45% reduction in the number of vaccinations. The analysis of the results further suggests that any optimal protocol for preventing lung metastases formation should be composed by an initial massive vaccine dosage followed by few vaccine recalls.</p> <p>Conclusions</p> <p>Such a reduction may represent an important result from the point of view of translational medicine to humans, since a downsizing of the number of vaccinations is usually advisable in order to minimize undesirable effects. The suggested vaccination strategy also represents a notable outcome. Even if this strategy is commonly used for many infectious diseases such as tetanus and hepatitis-B, it can be in fact considered as a relevant result in the field of cancer-vaccines immunotherapy. These results can be then used and verified in future "in vivo" experiments, and their outcome can be used to further improve and refine the model.</p

    Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    Get PDF
    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation

    Long-term outcome of chronic dialysis in children

    Get PDF
    As the prevalence of children on renal replacement therapy (RRT) increases world wide and such therapy comprises at least 2% of any national dialysis or transplant programme, it is essential that paediatric nephrologists are able to advise families on the possible outcome for their child on dialysis. Most children start dialysis with the expectation that successful renal transplantation is an achievable goal and will provide the best survival and quality of life. However, some will require long-term dialysis or may return intermittently to dialysis during the course of their chronic kidney disease (CKD). This article reviews the available outcome data for children on chronic dialysis as well as extrapolating data from the larger adult dialysis experience to inform our paediatric practice. The multiple factors that may influence outcome, and, particularly, those that can potentially be modified, are discussed

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    A computational model of invasive aspergillosis in the lung and the role of iron

    Full text link
    BACKGROUND: Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this infection entails a series of complex and inter-related interactions between multiple recruited and resident cell populations with each other and with the fungal cell; in particular, iron is critical for fungal growth. RESULTS: A computational model of invasive aspergillosis is presented here; the model can be used as a rational hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and published literature, an in silico model of a section of lung tissue was generated that includes an alveolar duct, adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis. CONCLUSIONS: Using laboratory data from a mouse model of invasive aspergillosis in the context of transient neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic mathematical model of the immune response to Aspergillus species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0275-2) contains supplementary material, which is available to authorized users

    Computational Models as Novel Tools for Cancer Vaccines

    No full text
    none6Prevention of tumor growth by immunological approaches is based on the assumption that the immune system, if adequately stimulated before tumor onset, could be able to protect from specific cancers. In the last decade active immunization strategies effectively prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test specific vaccination schedules in the quest for optimality. Furthermore, another computational model was developed to simulate the scenario arising from the immunotherapy experiments with the Triplex vaccine as a therapeutic approach against lung metastases derived by mammary carcinoma. This chapter describes the trail we followed starting from the problem of evaluating immunopreventive schedules with a generic computer model for the immune system response to a model of metastasis passing through an in-silico detailed model of the cancer-immune system interaction in HER-2/neu transgenic mice. Altogether it provides an example of the successful use of a combination of animal and computational modeling to speed up the way from lab to the bedside and even the patient.mixedF. Castiglione; P.-L. Lollini; S. Motta; A. Palladini; F. Pappalardo; M. Pennisi.F. Castiglione; P.-L. Lollini; S. Motta; A. Palladini; F. Pappalardo; M. Pennisi
    corecore