245 research outputs found

    Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    Get PDF
    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach

    Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?

    Get PDF
    Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castillejaoccidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes

    Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China

    Get PDF
    The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline

    Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill

    Get PDF
    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy

    Lung response to Bordetella pertussis infection in mice identified by gene-expression profiling

    Get PDF
    Host genetics determines the course of Bordetella pertussis infection in mice. Previously, we found four loci, Tlr4 and three novel loci, designated Bps 1–3, that are involved in the control of B. pertussis infection. The purpose of the present study was to identify candidate genes that could explain genetic differences in the course of B. pertussis infection, assuming that such genes are differentially regulated upon infection. We, therefore, studied the course of mRNA expression in the lungs after B. pertussis infection. Of the 22,000 genes investigated, 1,841 were significantly differentially expressed with 1,182 genes upregulated and 659 genes downregulated. Upregulated genes were involved in immune-related processes, such as the acute-phase response, antigen presentation, cytokine production, inflammation, and apoptosis, while downregulated genes were mainly involved in nonimmune processes, such as development and muscle contraction. Pathway analysis revealed the involvement of granulocyte function, toll-like receptor signaling pathway, and apoptosis. Nine of the differentially expressed genes were located in Bps-1, 13 were located in Bps-2, and 62 were located in Bps-3. We conclude that B. pertussis infection induces a wide and complex response, which appears to be partly specific for B. pertussis and partly nonspecific. We envisage that these data will be helpful in identifying polymorphic genes that affect the susceptibility and course of B. pertussis infection in humans

    A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Get PDF
    Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica

    Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes

    Get PDF
    In situ persistence of coastal marsh habitat as sea level rises depends on whether macrophytes induce compensatory accretion of the marsh surface. Experimental planters in two North Carolina marshes served to expose two dominant macrophyte species to six different elevations spanning 0.75 m (inundation durations 0.4–99 %). Spartina alterniflora and Juncus roemerianus exhibited similar responses—with production in planters suggesting initial increases and then demonstrating subsequent steep declines with increasing inundation, conforming to a segment of the ecophysiological parabola. Projecting inundation levels experienced by macrophytes in the planters onto adjacent marsh platforms revealed that neither species occupied elevations associated with increasing production. Declining macrophyte production with rising seas reduces both bioaccumulation of roots below-ground and baffle-induced sedimentation above-ground. By occupying only descending portions of the parabola, macrophytes in central North Carolina marshes are responding to rising water levels by progressive declines in production, ultimately leading to marsh drowning

    Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    Get PDF
    Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments

    Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states

    Get PDF
    Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO) restricted states are potentially regulated through free fatty acid (FFA) mediated signalling and that leucine rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability nor whole body lipid oxidation 56 during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine enriched whey protein gel (GEL), administered as 22 g 1 hour pre-exercise, 11 g/h during and 22 g thirty minutes post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P= 0.001) compared 60 with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 μmol.L-1 respectively). No differences (P= 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol.L-1) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P= 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol.L-1 respectively). We conclude that leucine enriched protein feeding does not impair FFA availability nor whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO restricted states to promote skeletal muscle adaptations
    corecore