39,733 research outputs found

    Strong laws of large numbers for sub-linear expectations

    Full text link
    We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.Comment: 10 page

    Mass formulae and strange quark matter

    Full text link
    We have derived the popularly used parametrization formulae for quark masses at low densities and modified them at high densities within the mass-density-dependent model. The results are applied to investigate the lowest density for the possible existence of strange quark matter at zero temperature.Comment: 9 pages, LATeX with ELSART style, one table, no figures. Improvement on the derivation of qark mass formula

    The effect of non-linear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas

    Full text link
    With the aid of large-scale three-dimensional QED-PIC simulations, we describe a realistic experimental configuration to measure collective effects that couple strong field quantum electrodynamics to plasma kinetics. For two counter propagating lasers interacting with a foil at intensities exceeding 102210^{22} Wcm2^{-2}, a binary result occurs; when quantum effects are included, a foil that classically would effectively transmit the laser pulse becomes opaque. This is a dramatic change in plasma behavior, directly as a consequence of the coupling of radiation reaction and pair production to plasma dynamics

    Spin and Charge Structure of the Surface States in Topological Insulators

    Get PDF
    We investigate the spin and charge densities of surface states of the three-dimensional topological insulator Bi2Se3Bi_2Se_3, starting from the continuum description of the material [Zhang {\em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on surfaces other than the 111 surface has additional complexity because of a misalignment of the contributions coming from the two sublattices of the crystal. For these surfaces we expect new features to be seen in the spin-resolved ARPES experiments, caused by a non-helical spin-polarization of electrons at the individual sublattices as well as by the interference of the electron waves emitted coherently from two sublattices. We also show that the position of the Dirac crossing in spectrum of surface states depends on the orientation of the interface. This leads to contact potentials and surface charge redistribution at edges between different facets of the crystal.Comment: Use the correct spin operator. Changes affect the surface states spin structure, but not the spectru

    Inf-convolution of G-expectations

    Full text link
    In this paper we will discuss the optimal risk transfer problems when risk measures are generated by G-expectations, and we present the relationship between inf-convolution of G-expectations and the inf-convolution of drivers G.Comment: 23 page

    An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation

    Full text link
    The classical law of the iterated logarithm (LIL for short)as fundamental limit theorems in probability theory play an important role in the development of probability theory and its applications. Strassen (1964) extended LIL to large classes of functional random variables, it is well known as the invariance principle for LIL which provide an extremely powerful tool in probability and statistical inference. But recently many phenomena show that the linearity of probability is a limit for applications, for example in finance, statistics. As while a nonlinear expectation--- G-expectation has attracted extensive attentions of mathematicians and economists, more and more people began to study the nature of the G-expectation space. A natural question is: Can the classical invariance principle for LIL be generalized under G-expectation space? This paper gives a positive answer. We present the invariance principle of G-Brownian motion for the law of the iterated logarithm under G-expectation

    Anyonic statistics with continuous variables

    Full text link
    We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, hence allowing for a highly efficient creation, manipulation, and detection of anyons. This approach extends our understanding of the control and application of anyons and it leads to the possibility for experimental proof-of-principle demonstrations of anyonic statistics using continuous-variable systems.Comment: 5 pages, 2 figures, appear in Phys. Rev.

    Random solids and random solidification: What can be learned by exploring systems obeying permanent random constraints?

    Full text link
    In many interesting physical settings, such as the vulcanization of rubber, the introduction of permanent random constraints between the constituents of a homogeneous fluid can cause a phase transition to a random solid state. In this random solid state, particles are permanently but randomly localized in space, and a rigidity to shear deformations emerges. Owing to the permanence of the random constraints, this phase transition is an equilibrium transition, which confers on it a simplicity (at least relative to the conventional glass transition) in the sense that it is amenable to established techniques of equilibrium statistical mechanics. In this Paper I shall review recent developments in the theory of random solidification for systems obeying permanent random constraints, with the aim of bringing to the fore the similarities and differences between such systems and those exhibiting the conventional glass transition. I shall also report new results, obtained in collaboration with Weiqun Peng, on equilibrium correlations and susceptibilities that signal the approach of the random solidification transition, discussing the physical interpretation and values of these quantities both at the Gaussian level of approximation and, via a renormalization-group approach, beyond.Comment: Paper presented at the "Unifying Concepts in Glass Physics" workshop, International Centre for Theoretical Physics, Trieste, Italy (September 15-18, 1999

    Sporopollenin, a natural copolymer, is robust under high hydrostatic pressure

    Get PDF
    Lycopodium sporopollenin, a natural copolymer, shows exceptional stability under high hydrostatic pressures (10 GPa) as determined by in situ high pressure synchrotron source FTIR spectroscopy. This stability is evaluated in terms of the component compounds of the sporopollenin: p-coumaric acid, phloretic acid, ferulic acid, and palmitic and sebacic acids, which represent the additional n-acid and ndiacid components. This high stability is attributed to interactions between these components, rather than the exceptional stability of any one molecular component. We propose a biomimetic solution for the creation of polymer materials that can withstand high pressures for a multitude of uses in aeronautics, vascular autografts, ballistics and light-weight protective materials
    corecore