We investigate three kinds of strong laws of large numbers for capacities
with a new notion of independently and identically distributed (IID) random
variables for sub-linear expectations initiated by Peng. It turns out that
these theorems are natural and fairly neat extensions of the classical
Kolmogorov's strong law of large numbers to the case where probability measures
are no longer additive. An important feature of these strong laws of large
numbers is to provide a frequentist perspective on capacities.Comment: 10 page