In many interesting physical settings, such as the vulcanization of rubber,
the introduction of permanent random constraints between the constituents of a
homogeneous fluid can cause a phase transition to a random solid state. In this
random solid state, particles are permanently but randomly localized in space,
and a rigidity to shear deformations emerges. Owing to the permanence of the
random constraints, this phase transition is an equilibrium transition, which
confers on it a simplicity (at least relative to the conventional glass
transition) in the sense that it is amenable to established techniques of
equilibrium statistical mechanics. In this Paper I shall review recent
developments in the theory of random solidification for systems obeying
permanent random constraints, with the aim of bringing to the fore the
similarities and differences between such systems and those exhibiting the
conventional glass transition. I shall also report new results, obtained in
collaboration with Weiqun Peng, on equilibrium correlations and
susceptibilities that signal the approach of the random solidification
transition, discussing the physical interpretation and values of these
quantities both at the Gaussian level of approximation and, via a
renormalization-group approach, beyond.Comment: Paper presented at the "Unifying Concepts in Glass Physics" workshop,
International Centre for Theoretical Physics, Trieste, Italy (September
15-18, 1999