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Spin and charge structure of the surface states in topological insulators
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We investigate the spin and charge densities of surface states of the three-dimensional topological insulator
Bi2Se3, starting from the continuum description of the material [Zhang et al., Nat. Phys. 5, 438 (2009)]. The spin
structure on surfaces other than the (111) surface has additional complexity because of a misalignment of the
contributions coming from the two sublattices of the crystal. For these surfaces we expect new features to be seen
in the spin-resolved angular resolved photoemission spectroscopy (ARPES) experiments, caused by a nonhelical
spin polarization of electrons at the individual sublattices as well as by the interference of the electron waves
emitted coherently from two sublattices. We also show that the position of the Dirac crossing in the spectrum of
the surface states depends on the orientation of the interface. This leads to contact potentials and surface charge
redistribution at edges between different facets of the crystal.
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I. INTRODUCTION

A new class of materials, topological insulators, have
attracted a great deal of attention in the last two years (see
Refs. 1 and 2 for reviews). Typically these are band insulators
for which strong spin-orbit coupling leads to an inversion of
the bulk band gap. The band inversion3 causes the emergence
of protected two-dimensional states on the surface of this, in
other respects, conventional bulk insulator.

The surface states of a topological insulator have a conical
energy spectrum, characteristic of eigenmodes of the massless
Dirac equation. They are routinely described by the effective
two-dimensional Hamiltonian4

HS = vF (σxpy − σypx), (1)

where vF is the Fermi velocity and σx and σy are Pauli
matrices. The operator σ = (σx,σy,σz) is usually identified
with the true electron spin.5 The spin polarization is then
perpendicular to the electron’s momentum, which leads to the
surface states being referred to as “helical.”6 Yet, we are not
aware of a detailed investigation of the relation between σ and
the true spin. The nature of σ is not important for a number
of phenomena involving the surface states, in particular to
those that only depend on the nontrivial Berry phase acquired
by surface-state electrons.7,8 However, for the properties that
explicitly probe the electron’s spin, the nature of operators in
the effective Hamiltonian becomes of principal importance.9,10

In this paper we elucidate how the spin structure of the
surface electrons follows from the bulk Hamiltonian of the
topological insulator and shows that the relation between spin
and momentum is richer and more delicate than suggested by
a naive interpretation of Eq. (1).

As a specific material we will consider the compound
Bi2Se3, presently probably the most popular example of
a topological insulator. This material was considered both
theoretically and experimentally in Refs. 11 and 12, where
it was shown that Bi2Se3 has a large topologically nontrivial
band gap ∼0.3 eV, leading to surface states with a single
Dirac cone. Zhang and co-workers12,13 also suggested a
simple three-dimensional Hamiltonian describing the long-
wavelength electronic dynamics in Bi2Se3. This low-energy

Hamiltonian contains both the true electron spin and a
pseudospin as its primary degrees of freedom, where the
pseudospin refers to states with support on the Bi and Se
sublattices.

Bi2Se3 is a strongly anisotropic material, with a layered
structure involving quintuple layers of Bi and Se atoms.
(One quintuple layer consists of three Se layers strongly
bonded to two Bi layers in between.) Yet, by virtue of their
topological protection, the surface states exist for arbitrarily
oriented crystal surfaces, not only at the (111) surface parallel
to the quintuple layer. Based on the low-energy continuum
Hamiltonian of Zhang et al.,12 here we show that the σ

operator entering the surface Hamiltonian Eq. (1) coincides
with the electron’s spin for the (111) surface only. For any
other surface orientation, the spin content of the electron wave
function components is different on different sublattices, see
Fig. 1. Whereas most experiments are carried out for the (111)
surface of Bi2Se3 because the material cleaves well in this
direction, other surfaces are also realized, for example, in TI
nanoribbons in the experiment of Ref. 7. Our findings are
relevant for those nonstandard surfaces.

Experimentally, the dispersion of surface states is
found through angular resolved photoemission spectroscopy
(ARPES).14 Spin-resolved ARPES provides momentum-
resolved information about the spin polarization of the surface
states in topological insulators.15–17 In Sec. III we consider
the electron’s out-of-plane polarization measured via ARPES,
which may be caused by a spin structure of the surface states
that is more complicated than the spin structure suggested
by Eq. (1). The out-of-plane polarization may arise from the
interference effects of photoelectrons emitted from the two
sublattices for surfaces other than the standard (111) surface,
or from photoelectrons emitted from Se atoms for surfaces
that are neither parallel nor perpendicular to the plane of the
quintuple layers.

Another feature of realistic three-dimensional topological
insulators, that is easily overlooked in the effective surface
Hamiltonian (1) (but present in the effective low-energy
Hamiltonian of Ref. 12), is that the combination of broken
particle-hole symmetry and angular anisotropy of the bulk
Hamiltonian leads to different energies of the Dirac points at
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FIG. 1. (Color online) Polarization of surface-state electrons on
the Bi and Se sublattices for different orientations of the in-plane
momentum p for a surface orthogonal to the quintuple layer. Spin
textures for a symmetric model [Eq. (2)] are shown to demonstrate
the inevitable strong differences between the two sublattices spin
for surfaces other than (111). Details of the spin behavior for the
asymmetric case are given in Sec. IV.

different facets of the topological insulator crystal. Different
positions of the Dirac crossing (or the neutrality point) with
respect to Fermi energy would result in different surface
electrons densities at different surfaces of the crystal. However,
an uncompensated charge density at one or more crystal
surfaces comes at a large electrostatic energetic cost, and one
expects a charge redistribution in order to reduce the Coulomb
interaction energy. Below we describe the solution of the
corresponding electrostatic problem at an edge of a crystal,
at the intersection of two differently oriented surfaces. For
short facets, where the Coulomb interaction energies are not
large enough to induce full screening, a finite carrier density
may remain, illustrating the impossibility to tune the full
topological insulator surface to the Dirac point by means of
doping or gating.

II. SURFACE STATES

We first discuss a simplified version of the effective low-
energy continuum Hamiltonian of Ref. 12, which consists of
a three-dimensional Dirac-like Hamiltonian with momentum
dependent mass,

H = τzM(K) + τx(σ · K)A, M(K) = M − BK2, (2)

where we use the capital K = (Kx,Ky,Kz) for the three-
dimensional momentum. The z axis is chosen in the (111)
direction, that is, perpendicular to the plane of the quintuple
layers. The vectors σ = (σx,σy,σz) and τ = (τx,τy,τz) contain
two sets of Pauli matrices operating in different pseudospin
spaces. The matrices τx , τy , and τz refer to the P 1+

z and P 2−
z

orbitals of Refs. 12 and 13, which are such that states with
τz = 1 have support mostly on the Bi sublattice and states
with τz = −1 have support mostly on the Se sublattice. Below
we will refer to these τz = 1 and τz = −1 states simply as
states on the Bi and Se sublattices, respectively. The electron’s
spin is expressed in terms of the Pauli matrices as13,18

sz = σz

2
, sx = σxτz

2
, sy = σyτz

2
. (3)

(The correct form of the spin operator for Bi2Se3 is missing
in Ref. 12.) Equation (3) implies that the operators σ/2 and s
coincide for the electron residing on the Bi sublattice, whereas

the relation between s and σ/2 involves a rotation by a π angle
around the z axis on the Se sublattice.

The Hamiltonian of Eq. (2) has a higher symmetry than
the true low-energy Hamiltonian of Bi2Se3: It is not only
valence-band–conduction-band (particle-hole) symmetric, but
also symmetric under spatial rotations, provided the Pauli
matrices σ are rotated together with the coordinates, whereas
the Pauli matrices τ are kept fixed. The rotation symmetry
is a mathematical artifact of the pseudospin basis used in
Eq. (2). The strong asymmetry of the real crystal of Bi2Se3,
in which the z axis plays a special role, is reflected in the
anisotropic assignment of the spin operators sx , sy , and sz in
Eq. (3). Corrections to this simplified model Hamiltonian will
be discussed in Sec. IV. Note that a direct association of the
spin with σ in Eq. (2) would violate the parity of the true
system. That is why one needs to introduce the asymmetric
spin operator with the special axis z [Eq. (3)] even in case of
the most symmetric model Hamiltonian.13,18

The Hamiltonian Eq. (2) is of the second order in spatial
derivatives (momentum). Following Ref. 12, as well as a
number of subsequent articles,9,10,19,20 we require that all
four components of the wave function vanish at the crystal
surface. This choice of the boundary conditions guarantees
the existence of a branch of Dirac-like surface states with
Dirac crossing at the � point (the point of vanishing in-plane
momentum), even in the strongly asymmetric case of Sec. IV.
We should point out, however, that this boundary condition is
not unique, and that other choices of boundary conditions
have been advocated in the literature. References 18, 21,
and 22 suggest using an effective Hamiltonian that is linear
in momentum, with boundary conditions for which only one
pseudospin component of the wave function vanishes at the
surface. The two choices of boundary conditions agree quali-
tatively for the standard termination at the (111) surface (both
give a Dirac-like branch of surface states near the � point),
but it is not obvious how to extend the boundary condition of
Refs. 18, 21, and 22 to surfaces of arbitrary orientation, and
the two boundary conditions may give different predictions for
other surfaces or nonstandard surface terminations.22

For the explicit calculation of the surface states from the
model Hamiltonian (2) it is convenient to rotate the coordinate
system, such that the TI fills the half-space z < 0. This rotation
does not change Eq. (2), but it changes the relation between
the spin operators and the σ matrices: In the rotated coordinate
system, Eq. (3) takes the form

s = (σ · n)n
2

+ σ − (σ · n)n
2

τz, (4)

where n is the unit vector pointing in the direction perpen-
dicular to the quintuple layer plane in the rotated coordinate
frame.

Let us introduce two two-component spinor functions ψB

and ψS that describe the pseudospin τz = 1 and τz = −1 com-
ponents of the four-component wave function. Eigenfunctions
of the Hamiltonian Eq. (2) at energy ε that correspond to
surface states with momentum p parallel to the surface should
be found as linear combinations of the functions

ψB = uBei(pxx+pyy)+λz, ψS = uSe
i(pxx+pyy)+λz, (5)
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with different values of λ (Re λ > 0). Here and below we use
the lower-case symbol p = (px,py,0) to denote the in-plane
momentum of the surface states. The spinor amplitudes uB

and uS satisfy the coupled system of equations

(ε − M(p,λ))uB = A(σxpx + σypy − iλσz)uS,
(6)

(ε + M(p,λ))uS = A(σxpx + σypy − iλσz)uB,

where M(p,λ) = M − Bp2 + Bλ2 and p2 = p2
x + p2

y . The
inverse decay length can take two values λ1,2 which are the
solutions of the equation

ε2 = (M − Bp2 + Bλ2)2 + A2p2 − A2λ2, (7)

with Re λ > 0. In addition, the surface state satisfies the bound-
ary condition ψB(z = 0) = ψS(z = 0) = 0, which provides
one additional constraint from which the dispersion ε(p) can
be calculated.

To find the solution of Eqs. (6) and (7) one may first guess
the (correct) result for the spectrum,

ε(p) = ±Ap. (8)

Then Eq. (7) yields a quadratic equation for λ,

Aλ = M(p,λ) = (M − Bp2 + Bλ2), (9)

where the parameters A and B are taken from the original
Hamiltonian Eq. (2). The first equality here is the energy of
the surface state consistent with the surface Hamiltonian Eq.
(1) with A = vF . The second equality gives the values of

λ1,2 = (A ±
√

A2 + 4B2p2 − 4MB)/2B, (10)

consistent with this value of energy. Substitution of the ansatz
(8) into Eq. (6) then gives identical spinors uB and uS for
the two roots λ1,2, which guarantees that an appropriate linear
combination can be found that satisfies the boundary condition
ψB(z = 0) = ψS(z = 0) = 0 for all four components of the
spinor wave functions ψB and ψS simultaneously. The spinor
structure corresponding to the cases ε = ±Ap is

uB = 1

2

(±i

γ

)
, uS = i

2

(∓i

γ

)
, (11)

with γ = (px + ipy)/p. The full surface state then has the
form

ψB,S(r) = uB,Se
i(pxx+pyy)(eλ1z − eλ2z). (12)

For a particle-hole symmetric Hamiltonian Eq. (2) an electron
in a surface state is found with equal probability on either Bi
or Se sublattice. In order to clarify the spin content of the
surface states, we first calculate the expectation value of the
in-plane components of a σ operator on each sublattice. For
the in-plane components one finds

〈σi〉B = u
†
BσiuB = ±εijzpj

2p
,

(13)
〈σi〉S = u

†
SσiuS = −〈σi〉B,

where i,j = x,y, whereas

〈σz〉B = 〈σz〉S = 0. (14)

As in Eq. (11), the upper/lower sign corresponds to the
energies above/below the Dirac crossing. We see that for

both sublattices the expectation value of σ is an in-surface-
plane vector perpendicular to the momentum p. However the
direction of 〈σ 〉 is opposite for two sublattices. As we see from
Eqs. (3) and (4), the direction of 〈σ 〉B for the Bi sublattice
always coincides with the direction of the true spin. Thus the
spin of this component is always described by the surface
Hamiltonian Eq. (1). On the contrary, the spin of Se sublattice
electron component of the wave function differs from 〈σi〉S
by a 180-deg rotation around n, the axis normal to the layer
plane.

We conclude that the spin orientation of two sublattices
coincide with each other and with the prediction of Eq. (1)
if and only if the surface of the crystal coincides with the
quintuple layer plane. For any other crystal surface the two
sublattices spins differ, and the difference is typically large.
In Fig. 1 we show the spin directions for two sublattices for a
surface normal to the layer plane.

For certain applications, such as the description of spin and
angle resolved photoemission (see next section), it is preferable
to write the Hamiltonian (2) in a form in which the electron
spin operator s is directly proportional to σ . (Photoelectrons do
not carry a sublattice index, so that a spin operator that contains
τ is problematic in that context.) Here, following Ref. 13, we
perform the unitary transformation

H̃ = UHU ∗, U = 1 + τz

2
+ i(σ · n)

1 − τz

2
, (15)

where n is the vector normal to the quintuple layer. The
Hamiltonian H̃ no longer has the manifest rotational symmetry
of Eq. (2), but the relation between spin and Pauli matrices now
takes the standard form

s = σ/2. (16)

After the unitary transformation the two spinor amplitudes
take the form

ũB = uB, ũS = i(σ · n)uS, (17)

where uB and uS are given in Eq. (11).

III. PHOTOEMISSION

Spin and angle resolved photoemission spectroscopy (spin-
resolved ARPES)23 has been the tool of choice for the
experimental investigation of the helical nature of the surface
states in three-dimensional topological insulators.15,16 What
does the coexistence of two different spin polarizations of the
surface electron imply for the polarization of photoelectrons?

In general, the probability P of electron photoemission is
proportional to the squared matrix element of the interaction
Hint with the photon field,

P ∝ |〈f |Hint|i〉|2, (18)

where |f 〉 and |i〉 are the spinor states corresponding to the
free final and the initial surface electron states, respectively.
[One has Hint = (e/c)A · ĵ, where A is the vector potential
of the photon field and ĵ is the nonrelativistic current density
operator.] In our case, the initial state is described by separate
amplitudes ũB and ũS for electrons from the Bi and Se
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sublattices, which are given in Eqs. (11) and (17) above. Since
the interaction Hint is spin conserving and local, the spinor
structure uf of the photoelectron becomes a linear combination

uf = αũB + βũS, (19)

where the coefficients α and β contain contributions from
matrix elements of Hint on the Bi and Se atoms in the crystal,
respectively. Their precise value depends on the details of the
atomic structure and the frequency of the incident light.

Since the surface Hamiltonian Eq. (1) predicts a spin
polarization parallel to the surface, direct observation of
an out-of-plane spin would be of most interest. A simple
calculation gives for the z component

u+
f σzuf = (nz|β|2 + Re αβ∗)(nxpy − nypx)

p
. (20)

We see that in case of arbitrary surface orientation the
electron emitted from the Se sublattice acquires an out-of-
plane polarization even without interference. The nature of
this out-of-plane polarization is a direct consequence of the
special form of the spin operators in Eq. (4): The surface
electrons described by the symmetric Hamiltonian Eq. (2) for
each sublattice have the expectation value of the σ operator
parallel to the surface. However, since the spin of one sublattice
is obtained from σ/2 by a π rotation around the axis normal
to the quintuple layer n, the spins of this sublattice all lie
in a plane different from the crystal surface plane. (Similarly
for the asymmetric Hamiltonian of the following section, for
the general surface orientation, spins of both sublattices at
different values of momentum lie in two planes, different from
each other and from the surface plane.)

As we saw in Sec. II, only for the most studied (111) surface
(the surface parallel to the quintuple layer), polarizations of the
electron on both sublattices coincide. Consequently Eq. (20)
predicts no out-of-plane polarization here.

Most interesting is the photoemission from the surface
normal to the quintuple layers (nz = 0), where the out-of-plane
polarization appears due to the interference of contributions
from the two sublattices only, u+

f σzuf ∼ Re αβ∗ (20). The
unit cell of Bi2Se3 consists of five atoms, each hosting a
pz electron. The Hamiltonian Eq. (2) operates in a reduced
2 × 2 pseudospin subspace built from an even (with respect
to reflection through the middle plane of the quintuple layer)
state from the conduction band and an odd state from the
valence band.12 In our case of a surface normal to the
quintuple layer, in the odd state electron waves emitted from
the different atoms would cancel each other, unless there is
a finite phase difference due to the momentum of outgoing
electron. Thus we expect the photoionization amplitude from
the odd state to be β ∼ (p · n). Consequently the out-of-plane
spin component Eq. (20) should have a node and change sign at
(p · n) = 0.

IV. ANISOTROPIC TOPOLOGICAL INSULATORS

In the simplified model of Sec. II, the origin of the different
spin content of the surface states at different facets was
the special form of the spin operator Eq. (4). Whereas the
special symmetries of the Hamiltonian Eq. (2), rotational
and particle-hole symmetry are broken in real crystal, the

mechanism leading to the different spin content of surface
states at different facets continues to operate, as we now
show.

The general anisotropic and particle-hole asymmetric gen-
eralization of the Hamiltonian (2) is24

H = ε(K) + τzM + τx

∑
x,y,z

AiσiKi , (21)

where now

M(K) = M −
∑

KiBij Kj (22)

and

ε(K) =
∑

KiDij Kj , (23)

with a positive-definite symmetric matrix Bij and a symmetric
matrix Dij . The first term ε(K) in Eq. (21) is explicitly particle-
hole (valence-band–conduction-band) asymmetric. Choosing
the z axis to be orthogonal to the plane of the quintuple layer
of the Bi2Se3 crystal, the matrices Bij and Dij are found to be
diagonal12

Bij = Biδij , Dij = Diδij . (24)

The microscopic calculations of Ref. 12 give the following
values for their elements:

Az = A1 = 2.2 eV Å,

Bz = B1 = 10 eV Å
2
, (25)

Dz = D1 = 1.3 eV Å
2

for the direction normal to the layer,

Ax = Ay = A2 = 4.1 eV Å,

Bx = By = B2 = 56.6 eV Å
2
, (26)

Dx = Dy = D2 = 19.6 eV Å
2

for the two axes in the layer plane, and

M = 0.28 eV. (27)

Finding the surface states for the general Hamiltonian Eq. (21)
become a complicated algebraic problem. Here we discuss the
solutions only in case that Bij and Dij remain diagonal after
a rotation that brings the surface normal to the z axis. This
includes the case of a surface parallel to the quintuple layer
and a surface perpendicular to the layers in Bi2Se3, as in the
nanoribbons of Ref. 7.

As in Sec. II, we search for eigenfunctions of the
Hamiltonian (21) of the form (we use again K for the
three-dimensional momentum and p for the two-dimensional
surface states momentum)

ψB = uBei(pxx+pyy)+λz, ψS = uSe
i(pxx+pyy)+λz, (28)

where Re λ > 0 and we rotated the coordinate system, such
that the topological insulator occupies the half space z < 0.
With the particle-hole asymmetric term ε(K), simple guessing
of the appropriate solution, like we did in Sec. II, does not
work and one has to pursue an explicit derivation of the result.
To this end it is convenient to replace the sublattice spinors
uS = (uB↑ ,uB↓ ) and uS = (uS↑ ,uS↓ ) by spin-up and spin-down
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pseudospinors

u = (uB↑ ,uS↑ ), v = (uB↓ ,uS↓ ). (29)

These pseudospinor amplitudes now satisfy the system of
equations

(ε − ε − Mτz + iλAzτx)u = (Axpx − iAypy)τxv, (30)

(ε − ε − Mτz − iλAzτx)v = (Axpx + iAypy)τxu, (31)

where

M = M(p,λ) = M − Bxp
2
x − Byp

2
y + Bzλ

2,
(32)

ε = ε(p,λ) = +Dxp
2
x + Dyp

2
y − Dzλ

2.

From the first equation we find

v = �u, (33)

with

� = 1

Axpx − iAypy

[(ε − ε)τx + iMτy − iλAz]. (34)

Substituting this expression for v into Eq. (31) one finds

[ε − ε(p,λ)]2 = M(p,λ)2 + A2
xp

2
x + A2

yp
2
y − A2

zλ
2. (35)

This equation is biquadratic in λ and allows us to find two
values of the squared inverse decay length λ2

1,2 for each energy
ε, and consequently two decaying solutions with Re λ1,2 > 0.

The open boundary conditions at the surface can be satisfied
if there exists a choice of pseudospinors corresponding to two
solutions λ1 and λ2 such that

u1 = u2, v1 = v2. (36)

The first equality here is easily satisfied, because Eq. (35)
imposes no restrictions on the pseudospinor u. The second
equality then involves the � = �(ε,λ) of Eq. (34), which
depends on energy and on the specific root of the biquadratic
equation (35),

0 = v1 − v2 = [�(ε,λ1) − �(ε,λ2)]u. (37)

This equation has a solution only if the difference matrix
�(ε,λ1) − �(ε,λ2) has a zero eigenvalue, and consequently
det[�(ε,λ1) − �(ε,λ2)] = 0. Thus we find the condition

det[(ε1 − ε2)τx + i(M1 − M2)τ2 − iAz(λ1 − λ2)] = 0,

(38)

where λ1 and λ2 are the two roots of Eq. (35). This immediately
gives a simple formula

A2
z = (

B2
z − D2

z

)
(λ1 + λ2)2. (39)

After straightforward calculation we can now find the energy
of the surface states

ε(p) = Dz

Bz

M ±
√

A2
xp

2
x + A2

yp
2
y

√
1 − D2

z

B2
z

+ DxBz − DzBx

Bz

p2
x + DyBz − DzBy

Bz

p2
y, (40)

and the two spinor amplitudes (here we use again the more
meaningful spinor functions for two sublattices instead of the

pseudospinors u and v)

uB = 1

2

√
1 + Dz

Bz

(±i

γA

)
,

(41)

uS = i

2

√
1 − Dz

Bz

(∓i

γA

)
,

where now

γA = √
(Axpx + iAypy)/(Axpx − iAypy). (42)

The main differences between the solution of the simplified
Hamiltonian of Sec. II and the solution given in Eqs. (40)
and (41) are:

(1) The electron no longer spends equal time on the two
sublattices. The difference in probabilities is governed by the
ratio Dz/Bz, which can actually be small. (Reference 12 finds
D1/B1 ≈ 0.13.)

(2) For the anisotropic Hamiltonian the expectation value
of the σ operator, which we discussed in Sec. II, is no longer
perpendicular to the momentum. However, the expectation
values 〈σ 〉B,S on the Bi and Se sublattices are still perpendicu-
lar to the rescaled momentum px → Axpx , py → Aypy , and
Fig. 1 remains valid if the rescaled momentum is used. We
observe that such a rescaling can also be used to account for
the difference between the surface-state spin on the Bi and Se
sublattices that is found here and in Sec. II: Rescaling with
one inverted sign px → −Axpx , py → Aypy is sufficient to
permute the two panels in Fig. 1.

(3) The third important feature of the solution Eq. (40) is
also caused by the particle-hole asymmetric term ε0(K) in
Eq. (21). As long as one considers the bulk states, this term
leads to a trivial bending of both conduction and valence
bands. However, the inclusion of the energy ε0(K) into the
Hamiltonian (21) leads to a nonzero value of the Dirac
crossing energy, as can be seen from the explicit solution
(40). In the most general case of matrices Dij and Bij having
no vanishing elements we found the position of the Dirac
crossing, which is the (unique) energy eigenvalue of a surface
state with vanishing momentum parallel to the surface, to be
simply ε = εDirac = MDzz/Bzz. Thus, returning to the original
coordinate system of Eqs. (21)–(27), we may introduce a
vector e normal to the surface at a particular point and write
a formula for the energy of the Dirac crossing valid for the
entire crystal

εDirac = M
(∑

eiDij ej

) /(∑
eiBij ej

)
. (43)

Substituting the actual values of the matrices Dij and Bij , we
find that for Bi2Se3 the position of the Dirac crossing may vary
by as much as

�εDirac =
(

D2

B2
− D1

B1

)
M ≈ 0.06 eV ≈ A2

6.8 nm
, (44)

upon varying the orientation of the surface.

V. ELECTROSTATICS OF A TOPOLOGICAL
INSULATOR EDGE

Being built of neutral atoms, the topological insulator
crystal is obviously a charge-neutral system. Because of the

075302-5



P. G. SILVESTROV, P. W. BROUWER, AND E. G. MISHCHENKO PHYSICAL REVIEW B 86, 075302 (2012)

TI
E

FIG. 2. (Color online) Electric field near the edge of an
anisotropic TI.

bulk band gap, the bulk charge density is insensitive to the
precise choice of the Fermi energy. However, the requirement
of neutrality should also include the surface charges. Even
in the absence of particle-hole symmetry, the structure of
the surface-state spectrum is such that generically charge
neutrality is achieved if the Fermi energy equals the energy
of the Dirac crossing εDirac. Since the latter energy depends
on the orientation of the surface, see Eqs. (43) and (44),
surface-charge neutrality cannot be satisfied by a uniform
choice of the Fermi energy for the entire crystal. [The variation
of the surface charge density for a hypothetical uniform choice
of the Fermi energy is estimated as �n ∼ (�εDirac/A2)2/4π ≈
1.7 × 1011 cm−2.] Such a choice of the Fermi energy would
lead to a strong electric field along the surface, which should
not happen for a metallic surface. Instead, the surface charge
is redistributed near the edges between different facets, so that
the electric field parallel to the metallic surface vanishes. Far
away from the edge, surface neutrality will then be achieved
simultaneously for both surfaces, while the electrostatic
potential difference between two facets will compensate the
difference of the Dirac crossing energies �εDirac = �V . In the
limit that the surfaces can be approximated as perfect metals,
the solution of such electrostatic problem is straightforward.25

For two surfaces at a 90 deg angle, as shown in Fig. 2, the
potential �in and �out inside (polar angle −π/2 < φ < 0) or
outside (polar angle 0 < φ < 3π/2) the topological insulator
is

�out(r,φ) = 2�V

3πe
φ, �in(r,φ) = −2�V

πe
φ, (45)

corresponding to a surface charge density

|σ (r)| =
(

κ + 1

3

)
�V

2π2er
(46)

at a distance r away from the edge. Substituting the dielectric
constant of Bi2Se3, κ ≈ 110, and taking �V = 0.06 eV from
Eq. (44), we arrive at the estimate |σ (r)| ∼ (e/r) × 2.3 ×
106 cm−1. Doping of the surface electron gas by electrostatic
external gates would lead to an additional edge/corner charge
accumulation, similar to the edge charge accumulation in
graphene ribbons.26

The electrostatic calculation of Eqs. (45) and (46) ig-
nores completely the kinetic energy of the surface electrons.
However, due to the large dielectric constant in Bi2Se3 there
exists a regime where the semiclassical electron dynamics is
already described by a smooth coordinate dependent Fermi
energy EF (r) = AkF (r), but the electrostatic energy is not
yet dominant, e� ∼ EF (Thomas Fermi approximation). In

this case one requires the sum EF (r) + e� to be a constant
over the metallic surface, while electrostatics is recovered in
the large-sample limit. The range of validity of Eq. (45) is
now found as �V > A2kF (r) = A22

√
πσ (r)/e, leading to

r > 135 nm. For much smaller samples one should ignore
the Coulomb interaction and describe the surface electrons
by the Dirac equation with shifted crossing energy [Eqs. (43)
and (44)].

VI. DISCUSSION

In this article we have analyzed the spin structure of surface
states in the three-dimensional topological insulator Bi2Se3,
as it follows from the low-energy continuum description
proposed in Ref. 12. The inequivalence of the spin variables
on the Bi and Se sublattices in this continuum description
leads to a nontrivial spin structure of the surface states at
surfaces other than the (111) surface. We also found that the
energy of the Dirac crossing in the surface-state dispersion
depends on the surface orientation. Although the precise
boundary conditions of the effective low-energy description—
open boundary conditions, in which all components of the
spinor wave function vanish at the surface of the topological
insulator, as in Ref. 12—are key to our quantitative analysis,
we expect that the effects we predict persist if the boundary
conditions are changed. Different boundary conditions have
appeared in the literature for the (111) surface,18,21,22 but not
for other surfaces of a Bi2Se3 crystal.

The theoretical findings of this paper may be applied
to the interpretation of several experiments involving the
surface states of three-dimensional topological insulators.
Here we mention the STM measurements of the surface
electrons charge near an artificial step on Bi2Te3 surface27,28

and the measurement of Aharonov-Bohm oscillations in
the surface-state-mediated transport in Bi2Se3 nanoribbons.7

In the latter case a theoretical analysis predicts that the
magnetoconductance should depend strongly on the position
of the Dirac crossing for the electrons on the surface of
the nanoribbon.8 Obviously a nonuniformity of this Dirac
crossing of the type discussed above will affect the minimal
conductivity and interference pattern for the thick (∼100 nm)
rectangular shaped nanoribbons of Ref. 7 and should be taken
into account in a quantitative modeling of the device.

Our most remarkable result is the prediction of the possibil-
ity of out-of-plane momentum polarizations of photoemitted
electrons [Eq. (20)] depending on the exact orientation of
the surface. Measuring these spin components would confirm
the validity of the microscopic Hamiltonian of Ref. 12 and
its boundary conditions. It will also explicitly demonstrate
the signatures of interference of photoemission contributions
from two sublattices of Bi2Se3. Such experiments require,
however, the preparation of Bi2Se3 crystals with sufficient
quality surfaces other than in the (111) direction.

Although the low-energy model of Ref. 12, which we used
as the basis for our calculations, predicts a nontrivial spin
structure for surfaces other than the (111) surface, there may
be other mechanisms that lead to an effectively reduced spin
that are not included in this model. In this context, we mention
recent first-principles calculations of Yazyev and co-workers,
who find that the net spin polarization of surface states on the
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(111) surface is reduced by an amount of order 50%,29 which
they attribute to the effect of strong spin-orbit interaction on
the heavy Bi atoms. Since the magnitude of the spin of a
photoemitted electron has to be s = 1/2 (a free electron always
has its spin pointed in some direction), the reduced net spin
found in Ref. 29 implies a likely out-of-plane component of
photoemitted electrons, even for the (111) surface. This effect
may be suppressed since it involves the photoionization from
the inner row of Bi atoms, less accessible for ARPES. On
the other hand, as the spin-orbit interaction admixes px ± ipy

electron states to pz ones, one may play with the photon po-
larization to selectively enhance the electron’s ionization from
Bi. Further investigation in this direction is obviously desired.

Note added: Upon completing this version of the article,
we learned of Ref. 30, which also addresses the spin structure
and Dirac crossing of the surface states.
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