1,498 research outputs found

    Synthesis Of A Sulfur-graphene Composite As An Enhanced Metal-free Photocatalyst

    Get PDF
    postprin

    Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation

    Get PDF
    postprin

    Movements of genes between populations: are pollinators more effective at transferring their own or plant genetic markers?

    Get PDF
    The transfer of genes between populations is increasingly important in a world where pollinators are declining, plant and animal populations are increasingly fragmented and climate change is forcing shifts in distribution. The distances that pollen can be transported by small insects are impressive, as is the extensive gene flow between their own populations. We compared the relative ease by which small insects introduce genetic markers into their own and host-plant populations. Gene flow via seeds and pollen between populations of an Asian fig species were evaluated using cpDNA and nuclear DNA markers, and between-population gene flow of its pollinator fig wasp was determined using microsatellites. This insect is the tree's only pollinator locally, and only reproduces in its figs. The plant's pollen-to-seed dispersal ratio was 9.183-9.437, smaller than that recorded for other Ficus. The relative effectiveness of the pollinator at introducing markers into its own populations was higher than the rate it introduced markers into the plant's populations (ratio = 14 : 1), but given the demographic differences between plant and pollinator, pollen transfer effectiveness is remarkably high. Resource availability affects the dispersal of fig wasps, and host-plant flowering phenology here and in other plant-pollinator systems may strongly influence relative gene flow rates

    Evaluation of analgesic, anti-inflammatoryand antipyretic activities of the ethanol extract from Speranskia tuberculate

    Get PDF
    Background: Speranskia tuberculata (Bunge) Baill, has been used to prevent and treat many diseases in Chinese folk medicine, nevertheless, few investigations had been reported.Materials and Methods: Animals were orally administered STE at the doses of 125, 250, 500 mg/kg. The analgesic effect was estimated in mice by hot-plate test and the acetic acid-induced writhing test. The anti-inflammatory effect was assessed using rat paw edema model elicited by fresh egg white and the mouse ear edema model caused by dimethylbenzene. The antipyretic effect was determined using the lipopolysaccharide (LPS)-induced rat fever model. In addition, the acute oral toxicity of STE was studied.Results: STE significantly and dose-dependently reduced the number of writhing responses in mice, prolonged reaction time of mice against heat stimulation, depressed egg white-induced paw edema in rats and the dimethylbenzene-caused ear edema in mice, but did not alleviate LPS-induced pyrexia in rats. No death of mice was observed when orally administered STE up to 52.8 g/kg (approximately 2080 times of clinical dose used).Conclusion: STE possesses evident analgesic and anti-inflammatory activities, but has no antipyretic effect. Furthermore STE has a favorable safety. These findings support the applications of Speranskia tuberculata as an analgesic and anti-inflammatory drug in folk medicine.Key Words: Herb, pain, inflammation, Pyrexia, Safet

    Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Get PDF
    Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf) mitochondrial (mtDNA) and nuclear (nDNA) DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH) gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency

    Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Get PDF
    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The largest aberration in gene expression, however, was observed during inflammation of the neonatally injured hindpaws in the ipsilateral LDH, which included thirty-six genes (encoding numerous members of glutamate, serotonin, GABA, calcitonin gene-related peptide, neurotrophin, and interleukin systems). These findings suggest that changes in gene expression may be involved in the long-term nociceptive effects of neonatal noxious insult at the spinal level
    corecore