8 research outputs found

    PERIOPERATIVE DEXMEDETOMIDINE REDUCES DELIRIUM IN ELDERLY PATIENTS AFTER LUNG CANCER SURGERY

    Get PDF
    Background: Delirium, which is one of the most disturbing postoperative complications in elderly patients, shows high morbidity in patients undergoing lung cancer surgery. Dexmedetomidine (DEX) is considered a potential prophylactic agent for preventing patients’ delirium after lung cancer surgery. Subjects and methods: Medical records of lung cancer patients over 65 years old with radical pulmonary resection at Henan Provincial People’s Hospital from January 2015 to December 2017, China, were evaluated. Patients, care-providers, and investigators were all blinded to group assignment. DEX was administered in the preoperative and intraoperative periods. The incidence of delirium was calculated based on the Intensive Care Delirium Screening Checklist (ICDSC). Scores of ≥4 and 1-3 points represent the diagnoses of delirium and a pre -delirious state, respectively. Results: During postoperative day 1 (POD 1) to POD 7, delirium occurs in both groups. During postoperative POD 1 to POD 7, the incidence of delirium is lower in the DEX group than that in the control group. Furthermore, there are more mild delirium patients but fewer moderate and severe delirium patients in the DEX group compared with the control group. Finally, patients in the DEX group have a shorter duration of delirium, lower numeric pain rating scale during movement and better sleep quality. Conclusion: Preoperative and intraoperative application of DEX can reduce the incidence and intensity of delirium after pulmonary resection in elderly patients with lung cancer

    Transcriptome Analysis Reveals the Negative Effect of 16 T High Static Magnetic Field on Osteoclastogenesis of RAW264.7 Cells

    No full text
    The magnetic field is the most common element in the universe, and high static magnetic field (HiSMF) has been reported to act as an inhibited factor for osteoclasts differentiation. Although many studies have indicated the negative role of HiSMF on osteoclastogenesis of RANKL-induced RAW264.7 cells, the molecular mechanism is still elusive. In this study, the HiSMF-retarded cycle and weakened differentiation of RAW264.7 cells was identified. Through RNA-seq analysis, RANKL-induced RAW264.7 cells under HiSMF were analysed, and a total number of 197 differentially expressed genes (DEGs) were discovered. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that regulators of cell cycle and cell division such as Bub1b, Rbl1, Ube2c, Kif11, and Nusap1 were highly expressed, and CtsK, the marker gene of osteoclastogenesis was downregulated in HiSMF group. In addition, pathways related to DNA replication, cell cycle, and metabolic pathways were significantly inhibited in the HiSMF group compared to the Control group. Collectively, this study describes the negative changes occurring throughout osteoclastogenesis under 16 T HiSMF treatment from the morphological and molecular perspectives. Our study provides information that may be utilized in improving magnetotherapy on bone disease

    Exosomes: Versatile Nano Mediators of Immune Regulation

    No full text
    One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed

    PERIOPERATIVE DEXMEDETOMIDINE REDUCES DELIRIUM IN ELDERLY PATIENTS AFTER LUNG CANCER SURGERY

    No full text
    Background: Delirium, which is one of the most disturbing postoperative complications in elderly patients, shows high morbidity in patients undergoing lung cancer surgery. Dexmedetomidine (DEX) is considered a potential prophylactic agent for preventing patients’ delirium after lung cancer surgery. Subjects and methods: Medical records of lung cancer patients over 65 years old with radical pulmonary resection at Henan Provincial People’s Hospital from January 2015 to December 2017, China, were evaluated. Patients, care-providers, and investigators were all blinded to group assignment. DEX was administered in the preoperative and intraoperative periods. The incidence of delirium was calculated based on the Intensive Care Delirium Screening Checklist (ICDSC). Scores of ≥4 and 1-3 points represent the diagnoses of delirium and a pre-delirious state, respectively. Results: During postoperative day 1(POD 1) to POD 7, delirium occurs in both groups. During postoperative POD 1 to POD 7, the incidence of delirium is lower in the DEX group than that in the control group. Furthermore, there are more mild delirium patients but fewer moderate and severe delirium patients in the DEX group compared with the control group. Finally, patients in the DEX group have a shorter duration of delirium, lower numeric pain rating scale during movement and better sleep quality. Conclusion: Preoperative and intraoperative application of DEX can reduce the incidence and intensity of delirium after pulmonary resection in elderly patients with lung cancer
    corecore