29 research outputs found

    Development and Impact of Geocoris punctipes (Say) (Hemiptera: Lygaeidae) on Selected Pests of Greenhouse Ornamentals

    Get PDF
    The big-eyed bug, Geocoris punctipes (Say) (Hemiptera: Lygaeidae), a generalist insect predator common in several agricultural systems, is explored as a biological control agent against pests of ornamentals in greenhouses. This research consists of three components: 1) Evaluation of development and survival of the predator (egg through adulthood) when reared on six diets, including greenhouse pests, a combination of greenhouse pests and plant material, and a meat-based artificial diet that has been developed for G.punctipes, 2) Assessment of predation rates of mass-reared big-eyed bugs by investigating the number of prey (three prey species common to greenhouse and ornamental crops) killed by newly eclosed, mass-reared, adult big-eyed bugs and comparing the predation of mass-reared and field-collected individuals of the same species, and 3) Determination of the effectiveness of G. punctipes in supressing populations of greenhouse whitefly, Trialeurodes vaporariorium (Westwood), and western flower thrips, Frankliniella occidentalis (Pergande), on a cut flower crop, Ageratum houstonium Miller, in the greenhouse. The hypothesis of this research is that the development, survival, and predation efficiency of big-eyed bugs reared on artificial meat-based diet are similar to those of insects reared on live prey. If the hypothesis is true, then mass-reared big-eyed bugs may have potential as a biological control agent of pests in greenhouse Integrated Pest Management programs. This research contributes to our understanding of beneficial insects and their impact on pest species, and to pest management programs that allow growers of ornamental plants to maximize economic profitability while minimizing environmental impacts by reducing pesticide use

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article

    Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean.

    No full text
    Climate change and climate variability are affecting marine mammal species and these impacts are projected to continue in the coming decades. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species using currently available information. We conducted a trait-based climate vulnerability assessment using expert elicitation for 108 marine mammal stocks and stock groups in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (projected change in environmental conditions) and sensitivity (ability to tolerate and adapt to changing conditions) of marine mammal stocks to estimate vulnerability to climate change, and categorize stocks with a vulnerability index. The climate vulnerability score was very high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas 24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57% high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids (n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5; 60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen were the primary drivers of high climate exposure, with effects mediated through prey and habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability scores, conducting leave-one-out analyses of individual attributes and individual scorers, and through scoring data quality for each attribute. These results provide information for researchers, managers, and the public on marine mammal responses to climate change to enhance the development of more effective marine mammal management, restoration, and conservation activities that address current and future environmental variation and biological responses due to climate change

    Exposure factor mean scores for all scored stocks.

    No full text
    Exposure factor mean scores for 108 U.S. marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles; whiskers represent 1.5 times the inter-quartile range; points represent all outlying values.</p

    Values used in the NOAA climate change web portal to generate climate exposure maps for 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.

    No full text
    Values used in the NOAA climate change web portal to generate climate exposure maps for 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.</p
    corecore