212 research outputs found
Molecular Architecture of the Human Mediator–RNA Polymerase II–TFIIF Assembly
The authors perform a cryo-EM study of the 1.9 MDa human Mediator-RNA polymerase II-TFIIF assembly, which reveals the structural organization of the human transcription initiation apparatus
A Logic with Reverse Modalities for History-preserving Bisimulations
We introduce event identifier logic (EIL) which extends Hennessy-Milner logic
by the addition of (1) reverse as well as forward modalities, and (2)
identifiers to keep track of events. We show that this logic corresponds to
hereditary history-preserving (HH) bisimulation equivalence within a particular
true-concurrency model, namely stable configuration structures. We furthermore
show how natural sublogics of EIL correspond to coarser equivalences. In
particular we provide logical characterisations of weak history-preserving (WH)
and history-preserving (H) bisimulation. Logics corresponding to HH and H
bisimulation have been given previously, but not to WH bisimulation (when
autoconcurrency is allowed), as far as we are aware. We also present
characteristic formulas which characterise individual structures with respect
to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407
Automata for true concurrency properties
We present an automata-theoretic framework for the model checking of true concurrency properties. These are specified in a fixpoint logic, corresponding to history-preserving bisimilarity, capable of describing events in computations and their dependencies. The models of the logic are event structures or any formalism which can be given a causal semantics, like Petri nets. Given a formula and an event structure satisfying suitable regularity conditions we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton, due to the nature of event structure models, is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. In order to show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets. As a proof of concept we provide a model checking tool implementing the technique
Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach
A combination of structural approaches yields a complete atomic model of the highly biochemically characterized Escherichia coli RNA polymerase, enabling fuller exploitation of E. coli as a model for understanding transcription
Definitions of basic terms relating to polymer liquid crystals (IUPAC Recommendations 2001)
The document first gives definitions of basic terms related to liquid-crystalline and mesomorphic states of matter and then terms specific to the classification of liquid-crystal polymers. The terms have been restricted to those most commonly encountered in the structural description of the latter class of materials. The terms have been selected from the recently published comprehensive document "Definitions of basic terms relating to low-molar-mass and polymer liquid crystals" [Pure and Applied Chemistry 73 (5), 845-895 (2001)] and are intended to form a readily usable guide for the reader interested in the structural description of polymer liquid crystals. The more comprehensive document should be used for terminology associated with types of mesophases and the optical and physical characteristics of liquid-crystalline materials. The advice given by representatives of the International Liquid Crystal Society for the preparation of this document is gratefully acknowledged.Fil:Barón, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Bounded Model Checking for Parametric Timed Automata
Abstract. The paper shows how bounded model checking can be ap-plied to parameter synthesis for parametric timed automata with con-tinuous time. While it is known that the general problem is undecidable even for reachability, we show how to synthesize a part of the set of all the parameter valuations under which the given property holds in a model. The results form a complete theory which can be easily applied to parametric verification of a wide range of temporal formulae – we present such an implementation for the existential part of CTL −X. 1 Introduction and related work The growing abundance of complex systems in real world, and their presence in critical areas fuels the research in formal specification and analysis. One of the established methods in systems verification is model checking, where the system is abstracted into the algebraic model (e.g. various versions of Kripke structures
Mechanism of eIF6 release from the nascent 60S ribosomal subunit.
SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311
Labeled EF-Tus for rapid kinetic studies of pretranslocation complex formation
The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics
- …