29 research outputs found
The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019
Summary
Background
Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally.
Methods
The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented.
Findings
Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]).
Interpretation
The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden.
Funding
Bill & Melinda Gates Foundation.Bill & Melinda Gates Foundation.publishedVersio
The global, regional, and national burden of cancer, 1990-2023, with forecasts to 2050 : a systematic analysis for the Global Burden of Disease Study 2023
Cancer is a leading cause of death globally. Accurate cancer burden information is crucial for policy planning, but many countries do not have up-to-date cancer surveillance data. To inform global cancer-control efforts, we used the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 framework to generate and analyse estimates of cancer burden for 47 cancer types or groupings by age, sex, and 204 countries and territories from 1990 to 2023, cancer burden attributable to selected risk factors from 1990 to 2023, and forecasted cancer burden up to 2050.Cancer estimation in GBD 2023 used data from population-based cancer registration systems, vital registration systems, and verbal autopsies. Cancer mortality was estimated using ensemble models, with incidence informed by mortality estimates and mortality-to-incidence ratios (MIRs). Prevalence estimates were generated from modelled survival estimates, then multiplied by disability weights to estimate years lived with disability (YLDs). Years of life lost (YLLs) were estimated by multiplying age-specific cancer deaths by the GBD standard life expectancy at the age of death. Disability-adjusted life-years (DALYs) were calculated as the sum of YLLs and YLDs. We used the GBD 2023 comparative risk assessment framework to estimate cancer burden attributable to 44 behavioural, environmental and occupational, and metabolic risk factors. To forecast cancer burden from 2024 to 2050, we used the GBD 2023 forecasting framework, which included forecasts of relevant risk factor exposures and used Socio-demographic Index as a covariate for forecasting the proportion of each cancer not affected by these risk factors. Progress towards the UN Sustainable Development Goal (SDG) target 3.4 aim to reduce non-communicable disease mortality by a third between 2015 and 2030 was estimated for cancer.In 2023, excluding non-melanoma skin cancers, there were 18·5 million (95% uncertainty interval 16·4 to 20·7) incident cases of cancer and 10·4 million (9·65 to 10·9) deaths, contributing to 271 million (255 to 285) DALYs globally. Of these, 57·9% (56·1 to 59·8) of incident cases and 65·8% (64·3 to 67·6) of cancer deaths occurred in low-income to upper-middle-income countries based on World Bank income group classifications. Cancer was the second leading cause of deaths globally in 2023 after cardiovascular diseases. There were 4·33 million (3·85 to 4·78) risk-attributable cancer deaths globally in 2023, comprising 41·7% (37·8 to 45·4) of all cancer deaths. Risk-attributable cancer deaths increased by 72·3% (57·1 to 86·8) from 1990 to 2023, whereas overall global cancer deaths increased by 74·3% (62·2 to 86·2) over the same period. The reference forecasts (the most likely future) estimate that in 2050 there will be 30·5 million (22·9 to 38·9) cases and 18·6 million (15·6 to 21·5) deaths from cancer globally, 60·7% (41·9 to 80·6) and 74·5% (50·1 to 104·2) increases from 2024, respectively. These forecasted increases in deaths are greater in low-income and middle-income countries (90·6% [61·0 to 127·0]) compared with high-income countries (42·8% [28·3 to 58·6]). Most of these increases are likely due to demographic changes, as age-standardised death rates are forecast to change by -5·6% (-12·8 to 4·6) between 2024 and 2050 globally. Between 2015 and 2030, the probability of dying due to cancer between the ages of 30 years and 70 years was forecasted to have a relative decrease of 6·5% (3·2 to 10·3).Cancer is a major contributor to global disease burden, with increasing numbers of cases and deaths forecasted up to 2050 and a disproportionate growth in burden in countries with scarce resources. The decline in age-standardised mortality rates from cancer is encouraging but insufficient to meet the SDG target set for 2030. Effectively and sustainably addressing cancer burden globally will require comprehensive national and international efforts that consider health systems and context in the development and implementation of cancer-control strategies across the continuum of prevention, diagnosis, and treatment.Gates Foundation, St Jude Children's Research Hospital, and St Baldrick's Foundation
The global burden of cancer attributable to risk factors, 2010–19 : a systematic analysis for the Global Burden of Disease Study 2019
Background: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). Interpretation: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Funding: Bill & Melinda Gates Foundation. © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliates “Muhammad Aziz Rahman and Huy Nguyen” are provided in this record*
The Global Burden of Cancer Attributable to Risk Factors, 2010-19: A Systematic Analysis for the Global Burden of Disease Study 2019
Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
The philosophy and digital representation of traumatic, non-volitional, physio-somatic experiences
M.S
Recommended from our members
A Case-Based Approach to Creativity in Problem Solving
One of the major activities creative problem solvers engage in is exploration and evaluation of alternatives, often adapting and merging several possibilities to create a solution to the new problem. We propose a process that models this activity and discuss the requirements it puts on representations and reasoning processes and present a program that solves problems by following this procedure
A Model-Based Approach to Blame-Assignment in Design
We analyze the blame-assignment task in the context of experience-based design and redesign of physical devices. We identify three types of blame-assignment tasks that differ in the types of information they take as input: the design does not achieve a desired behavior of the device, the design results in an undesirable behavior, a specific structural element in the design misbehaves. We then describe a modelbased approach for solving the blame-assignment task. This approach uses structure-behavior-function models that capture a designer's comprehension of the way a device works in terms of causal explanations of how its structure results in its behaviors. We also address the issue of indexing the models in memory. We discuss how the three types of blame-assignment tasks require different types of indices for accessing the models. Finally we describe the KRITIK2 system that implements and evaluates this model-based approach to blame assignment. 1 Introduction Design is a very common a..
