139 research outputs found

    Changes in prescribing for bipolar disorder between 2009 and 2016: national-level data linkage study in Scotland

    Get PDF
    Background: People with bipolar disorder typically require long-term pharmacological treatment to prevent episodes of depression or mania. However, evidence-based guidelines are often not followed by prescribers and, in some countries, prescribing of lithium is in decline. Polypharmacy is also common in bipolar disorder. Aims: To employ a data linkage approach to describe and evaluate prescribing patterns in bipolar disorder in Scotland between 2009 and 2016. Method: By linking prescribing data to the electronic Scottish Morbidity Records, we identified a cohort of 23 135 patients with bipolar disorder who were prescribed psychotropic medication between 2009 and 2016. We examined trends in proportions of patients prescribed each of six drug categories. Random effects logistic models examined change in prescribing over years of interest. Results: The most common form of treatment was antidepressant monotherapy (24.96%), with only 5.90% of patients receiving lithium monotherapy. Prescribing of antipsychotics and anti-epileptics increased from 2009 to 2016 (antipsychotics: odds ratio 1.16, 95% CI 1.15–1.18; anti-epileptics: odds ratio 1.34, 95% CI 1.32–1.36), whereas prescribing of lithium decreased (odds ratio 0.83, 95% CI 0.82–0.85). Prescribing of valproate decreased from 2009–2016 in women, but increased in men (women: odds ratio 0.93, 95% CI 0.90–0.97; men: odds ratio 1.11, 95% CI 1.04–1.18). Conclusions: Antidepressant monotherapy was the most common form of treatment for bipolar disorder in Scotland and prescribing of lithium has declined between 2009 and 2016. The findings are concerning and represent a gap between treatment guidelines and clinical practice. Declaration of interest: None

    Staphylococcus aureus in animals

    Get PDF
    Staphylococcus aureus is a mammalian commensal and opportunistic pathogen that colonizes niches such as skin, nares and diverse mucosal membranes of about 20-30% of the human population. S. aureus can cause a wide spectrum of diseases in humans and both methicillin-sensitive and methicillin-resistant strains are common causes of nosocomial- and community-acquired infections. Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, S. aureus is a major cause of infection and disease in a plethora of animal hosts leading to a significant impact on public health and agriculture. Infections in animals are deleterious to animal health, and animals can act as a reservoir for staphylococcal transmission to humans. Host-switching events between humans and animals and amongst animals are frequent and have been accentuated with the domestication and/or commercialisation of specific animal species. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements such as phages, pathogenicity islands and plasmids as well as further host-specific mutations allowing it to expand into new host populations. In this chapter, we will be giving an overview of S. aureus in animals, how this bacterial species was, and is, being transferred to new host species and the key elements thought to be involved in its adaptation to new ecological host niches. We will also highlight animal hosts as a reservoir for the development and transfer of antimicrobial resistance determinants

    Environmental and social impact assessment of optimized post-tensioned concrete road bridges

    Full text link
    [EN] Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R]Penades-Pla, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, IJ.; Yepes, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 12(10):4265-01-4265-18. https://doi.org/10.3390/su12104265S4265-014265-18121

    Phage-inducible chromosomal islands as a diagnostic platform to capture and detect bacterial pathogens

    Get PDF
    Phage-inducible chromosomal islands (PICIs) are a family of phage satellites that hijack phage components to facilitate their mobility and spread. Recently, these genetic constructs are repurposed as antibacterial drones, enabling a new toolbox for unorthodox applications in biotechnology. To illustrate a new suite of functions, the authors have developed a user-friendly diagnostic system, based upon PICI transduction to selectively enrich bacteria, allowing the detection and sequential recovery of Escherichia coli and Staphylococcus aureus. The system enables high transfer rates and sensitivities in comparison with phages, with detection down to ≈50 CFU mL−1. In contrast to conventional detection strategies, which often rely on nucleic acid molecular assays, and cannot differentiate between dead and live organisms, this approach enables visual sensing of viable pathogens only, through the expression of a reporter gene encoded in the PICI. The approach extends diagnostic sensing mechanisms beyond cell-free synthetic biology strategies, enabling new synthetic biology/biosensing toolkits

    The bacteriophage-phage-inducible chromosomal island arms race designs an interkingdom inhibitor of dUTPases

    Get PDF
    Stl, the master repressor of the Staphylococcus aureus pathogenicity islands (SaPIs), targets phage-encoded proteins to derepress and synchronize the SaPI and the helper phage life cycles. To activate their cycle, some SaPI Stls target both phage dimeric and phage trimeric dUTPases (Duts) as antirepressors, which are structurally unrelated proteins that perform identical functions for the phage. This intimate link between the SaPI’s repressor and the phage inducer has imposed an evolutionary optimization of Stl that allows the interaction with Duts from unrelated organisms. In this work, we structurally characterize this sophisticated mechanism of specialization by solving the structure of the prototypical SaPIbov1 Stl in complex with a prokaryotic and a eukaryotic trimeric Dut. The heterocomplexes with Mycobacterium tuberculosis and Homo sapiens Duts show the molecular strategy of Stl to target trimeric Duts from different kingdoms. Our structural results confirm the participation of the five catalytic motifs of trimeric Duts in Stl binding, including the C-terminal flexible motif V that increases the affinity by embracing Stl. In silico and in vitro analyses with a monomeric Dut support the capacity of Stl to recognize this third family of Duts, confirming this protein as a universal Dut inhibitor in the different kingdoms of life

    Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding

    No full text
    We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range, demonstrated for the first time in this platform. The waveguide propagation loss of 0.82 dB/cm is reported, some of the lowest loss yet achieved in silicon waveguides for this wavelength range. These results establish a direct path to ultimately extending the operational wavelength range of silicon wire waveguides to the entire transparency window of silicon

    III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range

    Get PDF
    A compact (1.2 mm(2)) fully integrated mid-IR spectrometer operating in the 3 mu m wavelength range is presented. To our knowledge this is the longest wavelength integrated spectrometer operating in the important wavelength window for spectroscopy of organic compounds. The spectrometer is based on a silicon-on-insulator arrayed waveguide grating filter. An array of InAs0.91Sb0.09 p-i-n photodiodes is heterogeneously integrated on the spectrometers output grating couplers using adhesive bonding. The spectrometer insertion loss is less than 3 dB and the waveguide-referred responsivity of the integrated photodiodes at room temperature is 0.3 A/W. (C) 2016 Optical Society of Americ

    Hijacking the hijackers: Escherichia coli pathogenicity islands redirect helper phage packaging for their own benefit

    Get PDF
    Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gram-negative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution

    Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl beta-1,6 glucosamine specific antibody production using biofilm-embedded bacteria

    Get PDF
    Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofil

    Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer

    Get PDF
    Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites
    corecore