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Introduction 6 

The genus Staphylococcus currently comprises 81 species and subspecies 7 

(https://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-8 

date/prokaryotic-nomenclature-up-to-date.html) and most members of the genus are 9 

mammalian commensals or opportunistic pathogens that colonize niches such as skin, nares 10 

and diverse mucosal membranes. Several species are of significant medical or veterinary 11 

importance. Staphylococcus pseudintermedius (1) is a leading cause of pyoderma in dogs and 12 

is considered to be a significant reservoir of antimicrobial resistance factors for the genus (2, 13 

3). S. pseudintermedius is very similar to S. intermedius and can be distinguished from other 14 

coagulase-positive staphylococci by positive arginine dihydrolase and acid production from β-15 

gentiobiose and D-mannitol (4), or using a multiplex-PCR approach targeting the nuclease 16 

gene nuc (5). Staphylococcus saprophyticus is the second leading cause of uncomplicated 17 

urinary tract infections (6). While Staphylococcus epidermidis is a normal component of the 18 

epidermal microbiota, it is a leading cause of biofilm contamination of medical devices (7). 19 

The most promiscuous and most significant human pathogenic staphylococcal species is 20 

Staphylococcus aureus, which is the causal agent of a variety of disease symptoms that can 21 

range from cosmetic to lethal manifestations. S. aureus is distinguished from most members 22 

of the genus by its abundant production of secreted coagulase, an enzyme which converts 23 

serum fibrinogen to fibrin and promotes clotting. However, the Staphylococcus intermedius 24 

group and some strains of Staphylococcus lugdunensis have coagulase activity (5, 8, 9).  25 

Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, 26 

S. aureus is a major cause of infection and disease in a plethora of animal hosts leading to a 27 

significant impact on public health and agriculture (10). Infections in animals are deleterious 28 

to animal health, and animals can act as a reservoir for staphylococcal transmission to 29 
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humans. While about 20-30% of the human population carry S. aureus, the prevalence of 30 

S. aureus varies from host species to species, and up to 90% of chicken, 42% of pigs, 29% in 31 

sheep and between 14 to 35% in cows and heifers are carriers (11, 12). The economic 32 

importance of various animal species strongly determines the abundance of available 33 

literature on the subject and as such it is not surprising that S. aureus colonisation and 34 

infection has only been superficially investigated in wild animals. Nevertheless, S. aureus has 35 

been isolated from a plethora of wild life sources such as red squirrels [exudative dermatitis; 36 

(13)], black bear [endocarditis; (14)], zebra [cutaneous granuloma; (15)], raccoon 37 

[Botriomycosis (16)], dolphin [pyogenic meningoencephalitis (17)], harbour seal [systemic 38 

infections (18)], black rhinoceros [skin lesion, sepsis (19)], boars [nasal carriage (20, 21)], 39 

Rhesus macaques [Nasal carriage van den Berg et al., 2011 (22)], great apes [nasal carriage 40 

and sepsis (23)], chaffinch [healthy carriage (24)], mallard [sepsis (25)], red deer, griffon 41 

vulture and Iberian ibex [carriage (21)].  42 

Animal isolates of S. aureus have been reported to exhibit distinct phenotypic properties that 43 

vary depending on the host of origin and six biotypes have been described: human, β-44 

haemolytic human, bovine, caprine, avian-abattoir and non-host specific. These biotypes 45 

have, by and large, withstood the application of sophisticated characterisation methods; 46 

isolates from different hosts, characterised by multilocus enzyme electrophoresis (MLEE), 47 

cluster together suggesting host specificity and a limited ability of strains to be transmitted 48 

from one host species to another (10). These observations were further corroborated by 49 

genotyping methods such as pulse field gel electrophoresis and strains belonging to specific 50 

biotypes grouped in the same or closely related pulsotype (26).  51 

DNA sequence-based approaches such as Multi-Locus-Sequence Typing (MLST) (27) have 52 

been extensively used to analyse population structures. At present, more than 3300 different 53 

sequence types isolated from more than 4700 S. aureus samples have been collated within 54 

the MLST reference database (http://saureus.mlst.net/). The database contains isolates from 55 

a range of species with human strains predominating by a large margin. Nevertheless, MLST 56 

showed that some clonal complexes (CCs) are predominant in, and associated with, specific 57 

hosts. In particular, it was shown that animal-associated strains belonged to specific clonal 58 

lineages whereas human strains did not (28, 29). Today we know that 87% of S. aureus isolates 59 

from colonization and infections in humans represent 11 widely disseminated clonal 60 
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complexes: CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30, CC45, CC51, and CC121. Clonal 61 

complexes CC8, CC15, CC22, CC30, CC45, CC30, CC45, and the rarer clonal complexes CC80 62 

and CC152 are primarily associated with isolates from humans (30). MLST-based phylogenetic 63 

analysis provided the first long-term picture of the evolution of both human and animal 64 

strains (31, 32) and indicated that S. aureus has coevolved with its human host over a long 65 

time and that it had acquired the ability to infect animals on multiple occasions via human-66 

to-animal host jumps. These host jumps eventually lead to specific strain lineages spreading 67 

and adapting within new animal hosts (32). Animal to human host jumps have also been 68 

documented (33), but are less frequent. Additionally, a number of methicillin-resistant 69 

S. aureus (MRSA) strains with low host specificity attributed to CC130 and CC398 have 70 

emerged over the past decades.  71 

The main clonal complexes associated with ruminants are CC97, CC133, CC522, and CC151, 72 

while clonal lineage ST385 is mainly represented by isolates from poultry (30, 34-38). 73 

Comparative analyses of the genomes of MSSA isolates attributed to ST5 from humans and 74 

poultry, and of MSSA/MRSA of CC398 revealed that the livestock subpopulations of these 75 

clonal complexes originated from ancestral populations in humans (39-41). In contrast, 76 

human-associated isolates of the ST97 lineage were clearly shown to have originated from 77 

ruminants (33). S. aureus colonisation or infection in companion animals are usually caused 78 

by human-related genotypes (42)], yet some colonisation factors can determine host 79 

specificity (38).  80 

S. aureus has colonised diverse animal species following host-switching events and 81 

subsequent adaptation through acquisition and/or loss of mobile genetic elements as well as 82 

further host-specific mutations allowing it to expand into new host populations (Figure 1, 83 

Table 1). Close contact between animals and humans can facilitate host-switching events, and 84 

there is a significant body of evidence indicating that with the beginning of animal 85 

domestication in the Neolithic period (10,000-2,000 BC) as well as the increased 86 

industrialisation of livestock farming, have provided a platform for animal-to-human 87 

transmission of pathogens (43). While host jumps are generally accompanied by the 88 

acquisition or loss of larger MGEs, not all host jumps are associated with such large-scale 89 

events. Recently, Viana et al. showed that single amino acids substitutions in the dltB gene 90 

were sufficient to confer infectivity of human ST121 isolates for rabbits (44). Overall, S. aureus 91 
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can readily cross species barrier and infect new hosts. This ability is largely associated with 92 

the large proportion of MGEs within the S. aureus genome and its capacity to exchange these 93 

through contact with its environment. The animal host can provide reservoirs for new 94 

virulence traits and antibiotic resistances and the increased contact between humans and 95 

animals through industrialised agriculture coupled with its globalisation necessitate tight 96 

monitoring of pathogenic animal S. aureus to understand the development and spread of 97 

staphylococcal lineages. 98 

In this chapter, we will be giving an overview of S. aureus in animals, how this bacterial species 99 

was, and is, being transferred to new host species and the key elements thought to be 100 

involved in the adaptation to new ecological host niches. We will also highlight animal hosts 101 

as a reservoir for the development and transfer of antimicrobial resistance determinants. 102 

 103 

S. aureus in ruminants 104 

S. aureus, next to Escherichia coli and several Streptococcal species such as Streptococcus 105 

uberis, and Streptococcus agalactiae is a major cause of mastitis in dairy cows and incurs a 106 

significant economic loss to the dairy industry. Mastitis in dairy cows results in reduced yields, 107 

the need for veterinary intervention and the loss of milk that has to be discarded either due 108 

to pathogen or antibiotic contamination. If treatment of the udder is unsuccessful, the animal 109 

is often culled. S. aureus is associated with both clinical and more commonly sub-clinical 110 

mastitis, both of which frequently result in persistent and recurrent infections with a low cure 111 

rate after antibiotic therapy (45). Mastitis leads to the influx of leucocytes into the udder and 112 

various thresholds for leukocyte numbers have been established for categorising good milk 113 

quality. Taking cow milk as an example, milk with more than 200,000 leukocytes per millilitre 114 

is considered to be infected, and, in the European Union (EU), when more than 400,000 cells 115 

per millilitre are found, the milk is deemed unfit for human consumption. Apart from the 116 

considerable economic losses incurred through S. aureus derived mastitis, mammary gland 117 

infections pose a considerable public health problem. S. aureus can be shed from infected 118 

glands and most staphylococcal isolates from dairy milk possess genes encoding enterotoxins. 119 

Thus, contamination of bulk milk can lead to food poisoning from fermented raw milk 120 

products (46, 47).  121 
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S. aureus can be found in healthy cows (carriers) on the teat skin, nasal cavity and rectum 122 

(11). However, the main reservoirs within a dairy herd are infected udders and teat skin. 123 

Infected animals can shed bacteria through their milk and transmission occurs primarily from 124 

udder to udder during milking via contact with contaminated milking machines, farmer’s 125 

hands or contaminated bedding (48). Other environmental transmission routes are less 126 

frequent; although S. aureus can survive in the environment for some time, it requires animal 127 

colonisation to ensure its survival.  128 

The majority of bovine infections worldwide is cause by a subset of specific, bovine-adapted 129 

S. aureus strains (28). The substantial genetic variation between different lineages (49, 50) 130 

suggests that there might be lineage-specific differences in the molecular mechanisms 131 

involved in S. aureus pathogenesis.  132 

Animal microbiota provide a reservoir of antibiotic resistance genes that can be acquired from 133 

their ecological niches and selected for by the use of antibiotics in agriculture. The ability of 134 

some animal-adapted S. aureus strains to colonise and infect humans can give rise to the 135 

development of new epidemic clones with hitherto uncharacterised virulence capacity (32). 136 

This becomes particularly clear in strains of the CC97 lineage, which is one of the major clones 137 

associated with bovine mastitis (28). Moreover, an increased number of bovine-to-human 138 

transmissions have been reported in recent years (37, 51, 52). A closer analysis revealed that 139 

at least two CC97 subclades for human infection had emerged that originated in bovine-to-140 

human host jumps and had thereafter spread through the human population (33). This 141 

provided further evidence that animals can provide a reservoir for the development of new 142 

S. aureus clones that can rapidly spread from animal to human and then through the 143 

population. Richardson et al. recently showed, using genomics based approaches, that cows 144 

are a major reservoir for re-infection of humans and multiple host-switching events, both 145 

human-to-cow and cow-to-human, have occurred over the past 3000 years (43). 146 

Bovine S. aureus isolates of the CC8 lineage closely resemble human isolates and Resch et al. 147 

used this observation to further study the genetic basis of host adaptation (53). They 148 

compared a total of 14 CC8 isolates from cows with subclinical mastitis, nine CC8 isolates from 149 

colonised or infected human patients and nine isolates belonging to typical bovine lineages 150 

(CC389, CC71, CC151, CC504 and CC479). They observed that CC8 isolates segregated into a 151 

unique group that was separate from typical bovine CCs and that within this group isolates 152 
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segregated into three subgroups. The main segregating parameter was the content of MGEs 153 

within the individual strains and they showed that strains of the mixed human-bovine isolate 154 

clusters contained β-haemolysin converting prophages. Conversely, the bovine isolates were 155 

devoid of this phage and harboured an additional, new non-mec staphylococcal cassette 156 

chromosome containing an LPXTG-surface protein with similarity to proteins present in 157 

environmental bacteria, often found as milk contaminants (53). 158 

Bar-Gal et al. compared pheno- and genotypic characteristics of bovine isolates from Israel, 159 

Germany, the USA and Italy using a Bayesian phylogenetic comparison of several key genes 160 

(nuc, coa, lukF and clfA), spa and agr typing, followed by CC assignment, and assessed the 161 

presence of a broad range of virulence factors and antimicrobial resistance genes (54). This 162 

analysis enabled them to cluster different isolates according to their host of origin. Sheep and 163 

goat isolates generally showed lower variability and fewer CCs compared to bovine isolates. 164 

Within the bovine clade, the authors described two subclades in which isolates matched 165 

strains found in Israel or abroad. Their data therefore corroborate other studies suggesting 166 

staphylococcal coevolution with its respective host, and might indicate the existence of 167 

multiple host jumps by bovine S. aureus strains that have occurred in diverse geographical 168 

locations (54). Overall, the authors found that 27 virulence associated factors showed a 169 

different prevalence in bovine compared to goat and sheep isolates. The authors noted a 170 

higher rate of strains carrying capsule type 8 in sheep and goat isolates compared to cow 171 

isolates, where both capsule types 5 and 8 were approximately equally distributed. 172 

Superantigen genes ssl07 and ssl08 were found in almost all bovine strains (>93%) but were 173 

only present in less than 44% of sheep and goat strains. Strikingly, all bovine strains carried 174 

the hysA2 gene encoding hyaluronate lyase, while only 48% of goat and sheep strains did. 175 

Cow strains showed a higher prevalence of leucocidins D and E, while leucocidins F-P83 and 176 

LukM appeared to be more prominent in goat and sheep strains (54). As noted above, 177 

infection of the mammary glands triggers the influx of large numbers of leucocytes that are 178 

deployed to fight off the infection. Leucocidins play an important role in bovine mastitis and 179 

can kill immune cells (leukocytes) thus protecting the pathogen (55-59). In agreement with 180 

this, the lukF/lukM genes are associated with the most prevalent CCs found in mastitic cattle 181 

(CC151, CC479, CC133, some CC97, most CC522) (60). Leucocidins show different specificity 182 

for immune cells (particularly phagocytic cells) of various hosts through recognition of 183 
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different host cell receptor alleles and this can be related to the formation of hybrids among 184 

the different LukF and LukS paralogs. Leucocidins LukMF’ and LukPQ are mainly associated 185 

with zoonotic disease and found amongst animal-derived S. aureus strains (61). Several 186 

additional virulence factors located primarily on MGEs, such as superantigens (62) and 187 

ruminant-specific alleles of the von Willebrand-binding protein (vWbp) (63), have also been 188 

found to be strongly associated with bovine hosts (43) 189 

S. aureus strains in ruminants appear to be undergoing a significant amount of DNA exchange 190 

leading to the emergence of hybrid clones. A recent study by Spoor et al. (64) showed that 191 

the CC71 lineage of livestock-associated (LA) S. aureus strains evolved from an ancestor 192 

belonging to the major bovine lineage CC97. The authors showed that multiple large-scale 193 

import and recombination events involving other S. aureus lineages occupying the same 194 

ruminant niche had occurred, and that these affected a 329 kb region surrounding the 195 

chromosomal origin of replication. These recombination events resulted in allele replacement 196 

and either loss or gain of genes influencing host-pathogen interactions. In particular, the CC71 197 

lineage acquired factors involved in innate immune evasion and bovine extracellular matrix 198 

adherence. The ability to take up and integrate large DNA segments from environmental 199 

staphylococcal strains highlights the pathogen’s capacity for rapid evolution and adaptation.  200 

In small ruminants, S. aureus is major cause of mastitis and septicaemia, by infections that 201 

may have a thromboembolic origin (65). These infections can also be secondary to parasite 202 

infestation which allows S. aureus of the normal skin flora to enter the bloodstream (66) and 203 

in lambs can lead to fatal toxaemia or to chronic disease with organ dissemination and abscess 204 

formation. In goats, staphylococcal infection can be secondary to parapox virus infection, 205 

leading to chorioptic mange or contagious pustular dermatitis (67). Morel’s disease in sheep 206 

and goats is caused by a subspecies of S. aureus, S. aureus subsp. anaerobius, primarily 207 

affecting young animals. The disease is manifested through the formation of abscesses in 208 

superficial lymph nodes usually located in the mandibular region. This disease is thought to 209 

be caused by a single bacterial clone worldwide (ST1465), which has undergone long-term 210 

adaptation and is restricted to small ruminants (68).  211 

Methicillin-resistant S. aureus (MRSA) in animals was first isolated from the milk of dairy cows 212 

with mastitis in Belgium in the early 1970s (69) and has since then been isolated from cows 213 

around the globe (70-76). MRSA strains harbour an MGE known as SCCmec, containing the 214 
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mec gene, which codes for an additional penicillin binding protein that has low affinity for β-215 

lactam antibiotics and therefore mediates resistance to nearly all compounds of this antibiotic 216 

class (besides ceftobiprole and ceftarolin). The mainly pig-related LA-MRSA CC398 has also 217 

been isolated from bovine udder infections (77), altogether in line with the elevated host 218 

promiscuity of this CC. Several cattle-associated MRSA lineages (ST130, ST425, and ST1943), 219 

that had previously been thought to be bovine-restricted, have been recently isolated from 220 

human disease or carriage in Europe (78). Moreover, a newly identified mec determinant, 221 

named mecC (also known as mecALGA251), which shares 70% homology with mecA, was 222 

identified among MRSA strains of CC130, CC705, and ST425 recovered from cattle and 223 

humans (79). The mecC allele is associated with a unique SCCmec element designated 224 

SCCmecXI and is thought to be present in about 1.4% of bovine S. aureus isolates in as many 225 

as 2.8% of herds.  226 

A recent study investigated the molecular profile of S. aureus strains isolated form bovine 227 

mastitis in the Shanghai and Zhejiang areas of China (80). The study identified a total of 19 228 

sequence types with the dominant STs being ST97, ST520, ST188, ST398, ST7 and ST9. The 229 

majority of isolates were found to be methicillin-sensitive (198/212) with ST97 being the most 230 

predominant lineage among MSSA strains and ST9-MRSA-SCCmecXII the most common MRSA 231 

clone. The study revealed that the molecular virulence profiles of different lineages differed 232 

significantly. The predominant lineage causing bovine mastitis in eastern China was the MSSA 233 

ST97, but there was some indication that toxigenic MRSA ST9 lineages were also present, and 234 

it was suggested that their spread and distribution should be monitored in the future. ST9-235 

MRSA strains, containing the SCCmecXII cassette have also been identified in nasal swabs 236 

from live pigs in China (80-82) and this cassette has also been identified in isolates from 237 

humans in Taiwan (83). These strains were shown to have a specific MGE profile encoding 238 

vWbp on a SaPIbov4-like pathogenicity island (83). vWbp’s are responsible for the activation 239 

of host pro-thrombin and the formation of fibrin strands, thereby promoting the 240 

development of infectious lesions. SaPI-borne vWbp are distinct from their genomic 241 

homologs and have been shown to be responsible for the coagulation of ruminant plasma 242 

(63) and may therefore have an important role in the animal host specificity of S. aureus. The 243 

vWbp variants encoded by the SaPIbov4-like pathogenicity island shared only between 67 and 244 

93% protein sequence identity to the previously characterized SaPI-vWbp (63). Nevertheless, 245 
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they were able to coagulate bovine and caprine plasma. However, the ability of these vWbps 246 

to coagulate human plasma was not assessed in the study (83). 247 

In a study investigating the prevalence of MRSA strains in contaminated milk and dairy 248 

products in southern Italy, 8.3% of all isolates (40/484) were methicillin resistant. Of these 249 

MRSA strains, the most prevalent sequence types in this study were ST152 (67.5%) followed 250 

by ST398 (25%), ST1 (5% and ST5 (2.5%) (84). 92.5% (37/40) and 5% of isolates harboured 251 

SCCmec type V or Iva, respectively, while 2.5% of isolates (1/40) harboured a no-further 252 

defined methicillin resistance determinant. 253 

MRSA of CC130, which has recently gained attention, carries mecC instead of mecA and is 254 

primarily associated with ruminants and wildlife that share the same habitats suggesting that 255 

there might be mutual exchange of strains (85). The mecC gene is also found in the dairy 256 

associated lineage ST425 causing mastitis in cows. Both CC130 and ST425 isolates have been 257 

isolated from human infections (79, 86, 87). 258 

S. aureus in rabbits 259 

Staphylococcal infection causes substantial economic losses in commercial cuniculture and 260 

clinical signs of S. aureus infection are present in more than 60% of rabbitries (88, 89). 261 

Infection of rabbits with S. aureus is associated with suppurative dermatitis, abscesses, 262 

pododermatitis and mastitis (90-93), with chronic mastitis being the main reason for culling 263 

diseased animals in rabbitries (88, 91). Most chronic staphylococcal infections in rabbits are 264 

caused by the ST121 lineage; less common lineages, such as ST96, can also be involved (94, 265 

95). Infection of mammary glands with ST121 strains resulted in elevated levels of 266 

granulocytes and reduced numbers of B cells, T cells, CD4+ T cells and CD8+ T cells compared 267 

to mammary glands infected with ST96 strains (96). The authors of the study suggested that 268 

this observation might be explained by strain-specific difference in host interactions leading 269 

to altered perception by the host’s immune system. However, further studies will be required 270 

to verify this hypothesis.  271 

Among S. aureus strains isolated in rabbitries, two main strain types were initially classified, 272 

according to their virulence, into high virulence strains with the capacity to rapidly spread 273 

through entire flocks, and low virulence strains that cause more limited infections (97). In 274 

accordance with this, high and low virulence strains can induce either severe or mild 275 
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symptoms, respectively, in a rabbit skin infection model, indicating the presence of either 276 

different virulence factors or differences in virulence factor expression levels (98). 277 

Interestingly, most low virulence strains could be grouped into poultry or human biotypes, 278 

whereas high virulence strains were members of a mixed biotype that produced β-haemolysin 279 

and showed no staphylokinase activity (99). Classical high-virulence strains belong to the 280 

biotype “mixed CV-C” and are sensitive to phages 3A/3C/55/71 of phage group II, suggesting 281 

a clonal origin of these high-virulence strains (100). Subsequent molecular typing studies 282 

found that the majority of high virulence strains belonged to ST121 and to a lesser extent 283 

ST425 with agr types 4 and 2, respectively (95).  284 

Viana et al. analysed a total of 178 strains from chronic mastitis in rabbits that presented with 285 

a range of disease manifestations including abscesses, suppurative mastitis with a lobular 286 

pattern, cellulitis and mixed lesions. The majority of isolates belonged to the high virulence 287 

ST121 (166/178) with sequence types ST398, 96, 45, 1, DVL879 and SLV9 (7, 1, 1, 2, 1, 288 

respectively) comprising the rest. However, disease symptoms could not be correlated to any 289 

specific genotype or sequence type (94). Rabbit isolates are significantly different from those 290 

found in humans and ruminants suggesting the presence of host-specific factors selective for 291 

rabbit-specific sequence types (93). The phylogenetic origin of the ST121 lineage was 292 

eventually traced back to a human-to-rabbit host jump approximately 40 years ago (44). 293 

Comparative analysis of the accessory genomes of ST121 strains showed that the majority of 294 

human strains contained MGEs, which encode potent toxins involved in human disease 295 

pathogenesis such as Panton-Valentine leucocidin (PVL) and exfoliative toxins (ETs), and all 296 

except one contained a β-haemolysin-converting phage (ΦSa3) encoding the human-specific 297 

immune evasion cluster (IEC). None of the rabbit strains contained PVL- or ET-encoding MGEs, 298 

indicating that these were dispensable for S. aureus infection of rabbits (44). Interestingly, 299 

the rabbit strains did not contain any MGEs that were unique to rabbit S. aureus indicating 300 

that the acquisition of rabbit-specific MGEs was not required to cause infection. Instead, the 301 

authors found that single non-synonymous mutations at the 5’-end of the dltB gene were 302 

sufficient to confer rabbit infectivity in human ST121 strains. DltB is an integral membrane 303 

protein encoded by the dltABCD operon that is likely responsible for the translocation and 304 

incorporation of D-alanine into teichoic acids and lipoteichoic acids in S. aureus (101). 305 

However, Viana et al. (44) showed that neither the D-alanine nor the bacterial cell wall 306 
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composition was altered in in strains harbouring the rabbit-infective dltB mutants. This would 307 

therefore suggest an additional function for DltB during rabbit infections and the authors 308 

propose that DltB, a member of the membrane-bound O-acetyltransferases (MBOAT) that 309 

transfer organic acids, typically fatty acids, to hydroxyl groups, has a role in signalling that 310 

could be responsible (44). Rabbit-associated S. aureus strains therefore appear to be 311 

representatives of infective strains that require little adaptation to jump between humans 312 

and rabbits and further studies will be required to determine how these relatively recent 313 

epidemic strains have evolved. 314 

Rabbitries endeavour to prevent S. aureus infection by limiting the introduction of new 315 

animals and by reducing contact between rabbit flocks. Unfortunately, antibiotic treatments, 316 

disinfection of cages and environments, as well as vaccinations have so far proved inefficient 317 

in eliminating S. aureus infections in rabbitries (97). Consequently, culling of entire flocks 318 

followed by thorough disinfection of the cages is the only efficient strategy for dealing with 319 

S. aureus epidemics in cuniculture.  320 

S. aureus in chickens and other poultry  321 

The growth of commercial poultry farming has provided a fertile field for staphylococcal 322 

infections and zoonotic transfer. (102). S. aureus is among the leading causes of bacterial 323 

infections in poultry (10) causing a wide range of diseases including septic arthritis, subdermal 324 

abscesses, gangrenous dermatitis and septicaemia (103). As with other hosts, staphylococcal 325 

strains associated with poultry cluster into specific clonal complexes that appear to have 326 

either evolved together with their avian host or adapted after zoonotic transmission. For 327 

example, CC385 has so far been identified only among avian hosts, whereas strains of CC5 328 

and CC398 have been isolated from chickens, humans and other mammals (39, 104, 105). One 329 

of the predominant staphylococcal lineages causing disease in the poultry industry is CC5 (40, 330 

103). Dissemination of CC5 into chicken involved a single transmission from human 331 

approximately 40 years ago (40) followed by a significant number of genetic recombination 332 

events leading to host adaptation. At least 44 recombination events in 33 genes have 333 

accumulated in poultry isolates and a further 47 genes were found to be more frequent in 334 

poultry compared to human isolates. Interestingly, many of these genes were common 335 

among chicken isolates from other clonal complexes indicating that horizontal transfer of 336 

these genes between CCs may have a potential role in host adaptation (102). On a phenotypic 337 
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level, these genetic alterations contribute to S. aureus adaptation to their poultry host and 338 

poultry isolates show enhanced growth at 42°C (the core body temperature of the adult 339 

chicken (106)) and greater erythrocyte lysis on chicken blood agar for chicken compared to 340 

human isolates (102). Conversely, most human isolates but only around half of the chicken 341 

isolates were able to lyse human erythrocytes (102). The improved growth of chicken isolates 342 

at 42°C is thought to be related to two poultry-associated genes (SAAV_0062 and SAAV_0064) 343 

that share more than 85% nucleotide identity with genes important for growth at elevated 344 

temperatures, including dnaK and dnaE (102).  345 

Furthermore, the host jump from human to poultry was also accompanied by genetic changes 346 

such as the loss of several genes involved in human disease pathogenesis and the acquisition 347 

of avian-specific mobile genetic elements (40). For example, the poultry strain ED98 had 348 

acquired 2 prophages, 2 plasmids and a SaPI, and these MGEs are widely distributed among 349 

avian, but completely absent from human strains (40). A similar observation has been made 350 

with bovine-adapted strains (107). 351 

Plasmids can confer virulence traits as well as antibiotic resistances (pT181, pT127, pC194, 352 

pC221, pC223 and pUB112) (108) and can contribute to the spread of disease. Such plasmids 353 

are present in S. aureus isolates causing a variety of difficult to treat chicken diseases (102, 354 

103, 109). A recent study has focused on identifying bottlenecking and drift-related genetic 355 

changes, and on separating them from genetic changes conferring advantages in the poultry 356 

niche, and on showing adaptation over time to the avian host (102). By sampling a total of 357 

191 isolates from diseased chickens from the UK, USA and Netherlands they confirmed that 358 

the major staphylococcal lineage in these infections was CC5 and that human and chicken 359 

isolates within CC5 clustered in distinct subgroups (102). They further identified an increased 360 

recombination frequency within the CC5 poultry relative to human isolate genomes and a 361 

tight clustering of chicken isolates once recombination events were compensated for. 362 

Changes in chicken-derived genomes localised within 33 genes and consisted of 196 363 

substitution and 44 recombination sites. 47 genes were more frequently present in CC5 364 

chicken compared to human isolates with 38 of these being shared among CC5 and CC1 and 365 

41 genes shared between CC5 and CC398 poultry isolates, respectively. All 47 poultry-366 

associated genes were present in strains of the CC385 lineage. Recombination regions in 367 

poultry isolates were associated with both the core genome and plasmids and many clustered 368 
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within three distinct genomic regions comprising genes with putative roles in heat shock 369 

response, haemolysis, adhesion, mobile elements and transposons. Furthermore, a total of 370 

58 poultry-associated genes and genetic elements were predicted to be involved in the 371 

transfer of mobile genetic elements containing gene with predicated function as 372 

transposases, in conjugation as well as pathogenicity islands and two hotspot regions 373 

containing phage related elements (102).  374 

Several genes that have so far been found only in poultry isolates are implicated in increased 375 

pathogenicity in chickens (41, 110). These include scpB, encoding a putative cysteine protease 376 

(Staphostatin A) (40, 111) which is found on an avian disease-associated plasmid (pAvX) in 377 

CC5 and CC385 strains (112). The CC385 lineage has been isolated from various wild and 378 

reared birds suggesting that it has had long-term avian host restriction (40, 43). 379 

Multi-host CC398: A melting pot and reservoir for virulence and resistance development 380 

MRSA strains of the CC398 complex have been studied in detail. This lineage is likely derived 381 

from a human MSSA clone that has successfully jumped into pigs where it acquired methicillin 382 

resistance and changes to its accessory genome (39). Despite these changes it has retained 383 

the ability to infect humans and it has been found in other animals suggesting that CC398 384 

strains are more promiscuous infecting agents than other CCs (43). CC398 is the main lineage 385 

of LA-MRSA strains in Europe, whereas other lineages have been isolated frequently in other 386 

geographical areas (113-115). CC9 LA-MRSA isolates are predominantly isolated in Asia 387 

whereas CC398 and CC5 are relatively common in North America (116). Methicillin resistance 388 

is conferred by the acquisition of SCCmec elements that contain various mec genes. Presently, 389 

at least 13 different structural types of SCCmec are known (30, 79-83). 390 

The proportion of S. aureus infections caused by MRSA has increased significantly from the 391 

end of the 1980s until 2000 worldwide (30). MRSA infections of humans could be initially 392 

grouped into either healthcare-associate (HA-) or community-associated (CA-) MRSA based 393 

on epidemiological criteria (117). HA-MRSA and CA-MRSA strains can be differentiated by 394 

their structural and functional genomic traits (118). However, these epidemiological criteria 395 

have become increasingly blurred as HA-MRSA have been found within the community and 396 

CA-MRSA strains were identified as the causative agents within the hospital setting (119, 120). 397 

In addition to these two categories of MRSA, animals can act as a reservoir for the 398 
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development and transmission of so-called livestock-associated (LA-) MRSA that have been 399 

found to cause infections within the human community. All three MRSA types differ in their 400 

genotype and associated genotypic traits from each other allowing, for now, a clear 401 

segregation into specific lineages associated with specific origins of the pathogen.  402 

In pigs, S. aureus usually does not cause much disease; skin infections in pigs are typically 403 

caused by Staphylococcus hyicus and have only been occasionally documented to be caused 404 

by S. aureus (67, 121, 122). Consequently, S. aureus had not been monitored extensively in 405 

pigs. However, it has recently been realized that pigs represent a major reservoir for MRSA, 406 

after all.  407 

CC398-MRSA and CC398-MSSA staphylococcal strains were first identified among pig farmers 408 

in France (122, 123). While CC398-MRSA strains rapidly spread among pigs and other 409 

livestock, they are considered to spread only infrequently beyond animals and personnel in 410 

direct contact with an infected animal (124-126). Most LA-CC398 strains are resistant to β-411 

lactams, macrolides, lincosamides, streptogramines, tetracyclines, and in part to 412 

fluoroquinolones as well as to cotrimoxazole. They are susceptible to glycopeptides, 413 

daptomycin, tigecyclin, rifampicin, fusidic acid, fosfomycin, and with few exceptions also to 414 

linezolid (30). Initial studies suggested a possible human origin for LA-CC398 that was 415 

transferred to pigs and subsequently acquired methicillin resistance driven by the pressure of 416 

antibiotics in animal feeds (39). However, a more recent analysis indicated that both human 417 

MSSA and LA-CC398 emerged in parallel around 1970 (127) 418 

The CC398 lineage is the most commonly detected MRSA lineage among European livestock 419 

and thus was given the name of livestock-associated MRSA (LA-MRSA) with spa types t011, 420 

t034 and t108 being the most prevalent among the LA-MRSA CC398 strains (128, 129). CC398 421 

MRSA strains are non-typable by SmaI-pulsed-field gel electrophoresis (PFGE) (130), comprise 422 

only a small set of spa-types and harbour a novel Sau1-hsdS1 type 1 restriction-modification 423 

system (131). LA-MRSA isolates typically carry SCCmec type IVa or V, which are different from 424 

those carried by other MRSA genotypes commonly found in community and healthcare 425 

settings (132). They often exhibit co-resistance to many non-β-lactam antimicrobials (e.g. 426 

macrolide (70%), trimethoprim (65%), gentamicin (14%), ciprofloxacin (8%), and 427 

trimethoprim-sulfamethoxazole (4%)), including those commonly used in animal production 428 

(133). The majority of CC398 LA-MRSA isolates do not produce toxins such as Panton–429 
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Valentine leucocidin (PVL) or enterotoxins (134). Following the reduction in cost of next-430 

generation sequencing approaches, further characterisation of S. aureus CC398 isolates has 431 

been possible through the increased availability of whole genome sequencing data for this CC 432 

allowing a more detailed insight into CC398’s host adaptation (see below sections). 433 

There is a frequent transmission of CC398 LA-MRSA between livestock and farmers (135-139) 434 

and, until recently, strains of this lineage were rarely found outside this group (125). However, 435 

a rising number of cases of MRSA CC398 has recently been observed in humans within the 436 

healthcare environment (140). These findings show a strong epidemiological link with 437 

livestock contact (124). The origin of LA-CC398-MRSA is believed to be a human MSSA strain 438 

harbouring the ΦSa3 phage. This phage carries a so-called immune evasion cluster that 439 

encodes many human-specific immunomodulatory factors including the sea, sep, scn, chp and 440 

sak genes (encoding staphylococcal enterotoxin A and P, staphylococcal complement 441 

inhibitor, chemotaxis inhibitory protein and plasminogen activator staphylokinase, 442 

respectively) and integrates within the hlb gene (141). The hlb gene encodes a 443 

sphingomyelinase known as beta-toxin or β-haemolysin, which can lyse sheep erythrocytes. 444 

The factors encoded in the ΦSa3 phage specifically interfere with the human immune 445 

response (142, 143) and about 90% of clinical human-derived isolates contain the ΦSa3 phage 446 

within their genome (141). Given that the immunomodulatory factors encoded in ΦSa3 447 

specifically target human immune factors, it is not surprising that the ΦSa3 phage is missing 448 

from the genomes of CC398 lineages adapted to livestock (30, 39). In general, porcine LA-449 

MRSA CC398 lack the ΦSa3 phage and are mecA positive while human-specific CC398 are 450 

mecA negative and ΦSa3 positive (144, 145). 451 

Studies indicate that the adaptation of CC398 to its host is connected to the loss and/or 452 

acquisition of mobile genetic elements, including ΦSa3,since the major changes that were 453 

revealed in these studies occurred within the CC398 accessory genome (134, 146). In 454 

particular, a new staphylococcal pathogenicity island (SaPI-S0385) was identified in strain 455 

S0385 that appears to be a composite of the 5’-sequence of SaPIbov1 (up to and including the 456 

excisionase gene) and SaPI5 (packaging module) and contains a unique region at its 3'-end 457 

encoding two putative extracellular proteins with similarity to staphylococcal complement 458 

inhibitor (SCIN) and vWbp, respectively. Both proteins also have a conserved homologue in 459 
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the core genome of S0385 however, no studies have been performed to determine whether 460 

these conferred advantages to S. aureus within the porcine host (146).  461 

In parallel, animal-independent human colonisation and infection by CC398-MSSA strains has 462 

occurred and spread worldwide with a particular high incidence rate in China where this clone 463 

accounts for almost 20% of skin and soft tissue infections (147). 464 

While CC398 has spread successfully among pigs in Europe, CC9 is the most commonly 465 

isolated lineage in farmed pigs in South-East Asia (82). Strains belonging to this CC are 466 

genetically distinct from strains of the CC398 lineage and their genome is consistent with an 467 

independent zoonotic event leading to its emergence. CC9 MSSA strains colonise humans and 468 

transmission between humans and pigs has been reported in the United Kingdom (122). The 469 

characterised CC9 isolates were deficient in the type IV restriction modification system (RM) 470 

which poses a major restriction barrier for the acquisition of foreign DNA. Loss of the type IV 471 

RM system has been observed in S. aureus strains prone to acquire the vanA gene from 472 

enterococci (148). Furthermore, two novel transposon-like elements containing genes with a 473 

high degree of similarity to genes from coagulase negative staphylococci or enterococci have 474 

been identified in CC9 strains but so far have not been found in S. aureus strains belonging to 475 

other lineages (82). Overall, these observations might suggest that the newly emerged LA-476 

CC9 strains could have an enhanced capacity for the uptake of foreign DNA. However, 477 

experimental verification remains to be provided. In line with this observation, the analysed 478 

CC9 strains contained SCCmec type XII cassettes with a class C2 mec and ccrC gene complex 479 

(82). Such CC9 strains have also been isolated from cattle in China (81). The genes encoded 480 

by the SCCmec type XII elements are similar to genes found in coagulase negative 481 

staphylococci which could represent a potential source of this element. The CC9 MRSA strains 482 

thus represent a significant threat to humans as well as livestock, owing to their apparent 483 

ability to acquire novel genetic elements and to their propensity for interspecies transmission. 484 

MRSA in companion animals – cats, dogs, horses  485 

Generally, MRSA strains of companion animals differ from those in livestock and meat 486 

production animals. S. aureus strains isolated from companion animals are mainly of human 487 

origin and are passed between human owners and their animals (38, 149-151). Dogs and cats 488 

are not typically colonised by S. aureus but rather form transient associations that can on 489 
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occasion lead to severe infections (38, 152). MRSA infections in companion animals are 490 

predominantly skin and soft tissue infections; previous antibiotic treatments of human 491 

owners, the number of antimicrobial courses, the number of hospitalisation days, implant 492 

devices, surgical interventions and contact with humans who have been previously 493 

hospitalised, account for major risk factors to these animals (153, 154). Overall, these risk 494 

factors are similar to those defining HA-MRSA infections in humans (155). 495 

S. aureus MRSA strains isolated from horses, and humans in close contact with horses differ 496 

from those spread throughout the human population. A CA-MRSA clone (CC8) was isolated 497 

from horses in Canada and was well-adapted to the animal host (156). In Europe, CC398 MRSA 498 

strains have also been isolated from horses and horse-to-human transmission has been 499 

shown (157, 158). MRSA was first reported in horses in 1999 during a 13-month outbreak in 500 

a veterinary teaching hospital in Michigan. These were horses that had undergone surgical 501 

procedures and were subsequently infected with MRSA that appeared to have originated 502 

from colonised surgical staff (159). MRSA has since then been detected among horses in 503 

Europe, America and Asia (160). Consistent with the risk factors, disease presentation in 504 

horses mirrors that observed in humans in the clinic. Skin and soft tissue MRSA infections, 505 

bacteraemia, septic arthritis, osteomyelitis, implant-related infections, metritis, omphalitis, 506 

catheter-related infections and pneumonia have all been reported in horses (160). MRSA 507 

infections in horses have been linked to strains carried by clinical personnel (CC1, CC254 and 508 

CC398) and nasal colonisation of veterinarians, veterinary personnel, and students was also 509 

observed indicating transmission to or from humans (161). 510 

The main CC isolated from horses is CC8 and equine isolates are distinct from human strains 511 

of the general population but not from strains isolated from close-contact personnel. A recent 512 

study has shown that equine CC8 isolates had acquired a phage encoding a novel equine allele 513 

of the staphylococcal inhibitor of complement (scn) as well as an equine-specific form of the 514 

bi-component leucocidins, LukPQ, that exhibited equine-specific activity (43, 162, 163). 515 

Acquisition of antibiotic resistance determinants influences the clustering of equine and pig 516 

isolates, suggesting a role for the acquisition of resistance in host adaptation (43). Adaptation 517 

to horses also involves the acquisition of SaPI-encoded paralogues of the von Willebrand-518 

binding factor able to coagulate equine plasma (63). Since phages are required for the 519 
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activation of SaPIs (164) it will be interesting to see whether the newly identified horse-520 

specific phage is also able to activate and transfer this horse specific SaPI. 521 

Monkeys in Sub-Saharan Africa 522 

Studies on species to species transmission of S. aureus have largely focused on LA-523 

transmission. Yet non-human primates are readily colonised by S. aureus in captivity and in 524 

the wild (165). In a recent study, Senghore and colleagues investigated the transmission of 525 

S. aureus from humans to green monkeys in The Gambia (166). The study revealed multiple 526 

anthroponotic transmissions of S. aureus from humans to green monkeys and the emergence 527 

of a monkey-associated clade of S. aureus approximately 2700 years ago. Development of this 528 

monkey-associated clade was accompanied by the loss of the ΦSa3 phage carrying genes 529 

known to play important roles in human colonisation. More recent anthroponotic 530 

transmissions included well-characterised human lineages and are thought to be the result of 531 

human encroachment on monkey habitats. However, the authors did not observe any 532 

monkey to human transmission (166). Non-human primates (and bats) in sub-Saharan Africa 533 

are colonised by the related but distinct staphylococcal species S. argentus and S. schweitzeri. 534 

While S. schweitzeri was isolated from monkeys from all study sites no transmission of these 535 

strains to humans was observed. In contrast, human-associated S. aureus sequence types 536 

(ST1, ST6, ST15) were detected in domestic animals and nonhuman primates indicating a 537 

human-to-monkey transmission in the wild (165). 538 

 539 

 540 

Staphylococcus aureus host switching and the role of mobile genetic elements 541 

A recent study by Richardson et al. used a population-genomic approach to better 542 

characterise how S. aureus adapts to multiple different hosts and causes colonisation and 543 

disease (43). The study found that humans act as a major hub for the pathogen for both 544 

ancient and recent host-switching events leading to the emergence of endemic livestock 545 

strains. Cows were shown to be the most frequent recipient of S. aureus host jumps but also 546 

appeared to be the main animal reservoir for reinfection of humans and the emergence of 547 

animal-derived human epidemic clones (33, 43). The study identified 14 host jumps from 548 

humans to cows (median number of host jumps per tree as distributions from all subsamples 549 
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and trees in the study) dating back as early as 2000 BC to as recently as 2012 AD. Cows were 550 

also shown to act as a source of S. aureus for small ruminants such as goats and sheep. A pan-551 

genome-wide association analysis identified host-specific accessory gene pools specific for 552 

birds, pigs and horses, respectively. Accessory genomes from human, cow, sheep and goat 553 

strains also clustered in a host-specific manner but exhibited greater diversity in gene 554 

content. The authors suggested that these differences might have been caused either through 555 

a range of cryptic host niches occupied by the pathogen, or because the time elapsed since 556 

the host-switching event, had been too short to allow sufficient diversification to result in the 557 

clear separation of human and ruminant accessory genome clusters. Alternatively, specific 558 

gene sets or combinations of gene sets might confer a more generalist host tropism. However, 559 

it was noted that clustering in equine and pig isolates was influenced by the acquisition of 560 

host-specific antimicrobial resistance determinants. Host-switching events were shown to be 561 

correlated with the acquisition via horizontal gene transfer of host-niche-specific genetic 562 

elements that confer selective advantages to the pathogen for survival within the new host. 563 

The study identified a total number of 36 distinct MGEs (including predicted plasmids, 564 

transposons, S. aureus pathogenicity islands and prophages). For instance, the β-haemolysin-565 

converting phage ΦSa3, which encodes modulators of the human innate immune response, 566 

was primarily associated with human strains, whereas several pathogenicity islands contain 567 

ruminant-specific superantigens or von Willebrand factor-binding proteins (62, 63). 568 

Conversely, equine isolates were shown to contain a prophage, integrated in the lipase 569 

precursor gene (geh), encoding equine-specific alleles of the staphylococcal inhibitor of 570 

complement (scn) and a bi-component leucocidin LukPQ (Table 1) (162, 163). The study also 571 

identified numerus previously uncharacterised MGEs. A novel plasmid SCCmec element 572 

encoding resistance to heavy metal ions (a common pig-feed supplement) was linked to 573 

human-to-porcine host-switching events. Furthermore, S. aureus isolates from animals had 574 

acquired several gene clusters encoding bacteriocins that would enable them to compete 575 

with the resident bacterial flora. Interestingly, the MGEs in S. aureus pig isolates showed an 576 

increased guanine-cytosine content and reduced codon-adaptation index that indicated a 577 

distinct genealogical origin for these MGEs which may be related to pathogenicity islands 578 

identified in the pig-associated zoonotic pathogen Streptococcus suis (43). Host-switching 579 

events are therefore accompanied by the rapid acquisition of MGEs that confer the capacity 580 

for survival within a new host niche, mainly by targeting the host’s innate immune response. 581 
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Acquisition of resistance to antimicrobials and heavy metals allow the pathogen to survive 582 

under high selective pressures; subsequent positive selection via point mutations or 583 

recombination (102) acts on the core genome to modify metabolic pathways and to further 584 

adapt S. aureus to its new host.  585 

S. aureus host adaptation was found to coincide, depending on the host, both with gain and 586 

loss of gene function. While avian strains contained a higher proportion of functional genes 587 

compared to strains from other host species, ruminant strains showed an increase in 588 

pseudogenes. Many of these pseudogenes in ruminants were found to be associated with 589 

nutrient transport, including carbohydrates, and could indicate metabolic remodelling in 590 

response to distinct nutrient availability. S. aureus was shown to further adapt to its host 591 

niche in response to the availability of distinct nutrients. The authors showed that strains 592 

isolated from dairy cattle exhibited an enhanced ability to utilise lactose as carbon source 593 

supporting the concept that S. aureus undergoes genetic diversification in response to the 594 

nutrients that differ in availability in different niches (43). 595 

The study also revealed that staphylococcal antibiotic and heavy metal resistance genes are 596 

unevenly distributed among isolates from different animal hosts and showed a clear 597 

correlation to antibiotic usage practices within medicine and agriculture. For example, 598 

human, pig and ruminant isolates harboured a collection of key resistance determinants that 599 

were absent in avian isolates, in line with antimicrobial usage practises (43).  600 

The acquisition of specific mobile genetic elements and core genome mutations plays a crucial 601 

role in S. aureus host adaptation (40, 44, 63). For instance, the presence/acquisition of mobile 602 

genetic elements not found in human strains could be clearly associated with host jumps from 603 

humans to avian and porcine hosts (39, 40, 43). Host-specific functional effectors of S. aureus 604 

pathogenicity such as leucocidins, superantigens and von Willebrand factor-binding proteins 605 

are frequently located on MGEs (61, 162, 163, 167-170). 606 

Conclusions 607 

In the last decades an increasing number of studies have demonstrated that S. aureus is able 608 

to colonise and infect a plethora of different eukaryotic hosts. While S. aureus can cause 609 

severe infections in some animals, others show less severe symptoms and are mainly 610 

colonised, acting as a staphylococcal reservoir for human reinfection. This is particularly true 611 
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for S. aureus lineages found in pigs and dairy cows. Due to the use of specific antibiotics and 612 

growth enhancing supplements, these strains have necessarily acquired mechanisms of 613 

resistance to these agents from various environmental sources. Current farming practices 614 

make farm animals ideal breading grounds for the development and/or acquisition of new 615 

resistance mechanism that can then spread into the community and pose a significant risk to 616 

the human population. There is an ever-increasing amount of data detailing host-switching 617 

events for S. aureus, with humans acting as the major exchange hub for strain lineages. These 618 

data highlight the ability of S. aureus to function as a multi-host pathogen and to evolve and 619 

adapt to new hosts. The ability of S. aureus to readily adapt to new environments and rapidly 620 

take up new genetic material via horizontal gene transfer makes the bacterium a most 621 

versatile coloniser, able to spread into new niches. Moreover, it can also rapidly adapt to new 622 

stresses and antibiotics with the result of an ever-continuing arms race between S. aureus 623 

and humankind.  624 
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 Table 1 Selected staphylococcal elements associated with specific hosts 
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MGE MGE-associated determinants putatively involved with 

virulence/resistance/host specificity 

Reference 

Human   

ΦSa3 (β-haemolysin 

converting phage) 

sea, sep, scn, chp and sak genes encoding staphylococcal 

enterotoxin A and P, staphylococcal complement 

inhibitor, chemotaxis inhibitory protein and plasminogen 

activator staphylokinase, respectively 

(43) 

MGE Type I restriction modification system “ 

Ruminant   

SaPIbov Staphylococcal enterotoxin C (sec-bovine) and L (sel), 

toxic shock syndrome toxin tst (TSST-1) 

(171, 172) 

Enterotoxin gene 

cluster 

Gene cluster encoding 5 enterotoxins (seg, sei, sem, sen, 

seo) 

(171, 173) 

Not described Superantigen-like proteins encoded by ssl07 and ssl08 (54) 

SaPIbov4 von Willebrand factor binding protein with ruminant-

specific activity 

(63) 

non-mec¬ 

staphylococcal 

cassette chromosome 

LPXTG-surface protein (53) 

SCC-mecC mecC (79) 

Equine   

ΦSaeq1 Contains immune modulators with equine-specific 

activity 

scn gene encoding staphylococcal complement inhibitor 

(SCIN)  

(163) 

 lukPQ genes encoding the bipartite leucocidin PQ (162) 

SaPIeq1 Encodes vWbp able to coagulate equine and ruminant 

plasma 

(63) 

Porcine   

Plasmid SCCmec (43) 

Plasmid Resistance to heavy metals “ 

SaPI-S0385 Composite of SaPI5 and SaPIbov1 

Unique region at 3’-end encoding extracellular proteins 

with similarity to staphylococcal complement 

inhibitor (SCIN) and von Willebrand factor-binding 

protein (vWbp) 

(146) 

Avian   

ΦAvβ (β-haemolysin-

converting phage) 

Putative ornithine cyclodeaminase 38% amino acid 

identity to ornithine cyclodeaminase made by Bacillus 

cereus 

HMM match to ornithine cyclodeaminase/mu-crystalin 

family (PF02423) 

Putative membrane protease 27% amino acid identity to 

Plnl (membrane-bound protease of CAAX family) made 

by Lactobacillus plantarum; HMM match to CAAX 

amino terminal protease family 

(40) 

ΦAv1 Ear-like protein 

ear previously identified in pathogenicity islands SaPI1, 

SaPI3, SaPI5 and SaPImw2  

ear encodes β-lactamase-like protein 

“ 
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SaPIAv Putative virulence region 

Novel hypothetical proteins in accessory region A3 

where virulence genes such as 

tst and eta located in other SaPI  

SAAV_0806: signal peptide, 1 transmembrane helix 

SAAV_0810: signal peptide, 4 

transmembrane helices 

May suggest role as membrane transporter 

“ 

pAvX Thiol protease ScpA 

99.5% amino acid identity to ScpA (GenBank accession 

no. AB071596) previously identified among chicken 

isolates from Japan 

Suggested role in poultry dermatitis 

Lysophospholipase 

42% amino acid identity to a lysophospholipase 

encoded by Bacillus clausii 

Bacterial phospholipases are known virulence factors 

implicated in disease pathogenesis 

“ 

pAvY N/A  

pT181 Tetracycline resistance (102, 108) 

pT127 Tetracycline resistance “ 

pC194 Chloramphenicol resistance “ 

pC221 Chloramphenicol resistance “ 

pC223 Chloramphenicol resistance “ 

pUB112 Chloramphenicol resistance “ 
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Figure 1 Humans act as a major hub for S. aureus host jumps. S. aureus has been isolated 

from a plethora of vertebra and has undergone multiple series of host jumps. A major 

exchange hub are humans that interact with domesticated livestock and companion animals. 

Arrow thickness indicates the frequency of host jumps with colours from yellow to red 

indicative of their likelihood. Figure adapted from (43). 

 

 


