13 research outputs found

    The protoMIRAX Hard X-ray Imaging Balloon Experiment

    Full text link
    The protoMIRAX hard X-ray imaging telescope is a balloon-borne experiment developed as a pathfinder for the MIRAX satellite mission. The experiment consists essentially in a coded-aperture hard X-ray (30-200 keV) imager with a square array (13×\times13) of 2mm-thick planar CZT detectors with a total area of 169 cm2^2. The total, fully-coded field-of-view is 21×2121^{\circ}\times 21^{\circ} and the angular resolution is 1^{\circ}43'. In this paper we describe the protoMIRAX instrument and all the subsystems of its balloon gondola, and we show simulated results of the instrument performance. The main objective of protoMIRAX is to carry out imaging spectroscopy of selected bright sources to demonstrate the performance of a prototype of the MIRAX hard X-ray imager. Detailed background and imaging simulations have been performed for protoMIRAX balloon flights. The 3σ\sigma sensitivity for the 30-200 keV range is ~1.9 ×\times 105^{-5} photons cm2^{-2} s1^{-1} for an integration time of 8 hs at an atmospheric depth of 2.7 g cm2^{-2} and an average zenith angle of 30^{\circ}. We have developed an attitude control system for the balloon gondola and new data handling and ground systems that also include prototypes for the MIRAX satellite. We present the results of Monte Carlo simulations of the camera response at balloon altitudes, showing the expected background level and the detailed sensitivity of protoMIRAX. We also present the results of imaging simulations of the Crab region. The results show that protoMIRAX is capable of making spectral and imaging observations of bright hard X-ray source fields. Furthermore, the balloon observations will carry out very important tests and demonstrations of MIRAX hardware and software in a near space environment.Comment: 9 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Detection of the thermal component in GRB 160107A

    Get PDF
    We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ∼45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0 +0.3-0.2 keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism

    What can we learn from GRBs?

    Get PDF
    We review our recent results on the classification of long and short gamma-ray bursts (GRBs) in different subclasses. We provide observational evidences for the binary nature of GRB progenitors. For long bursts the induced gravitational collapse (IGC) paradigm proposes as progenitor a tight binary system composed of a carbon-oxygen core (COcore) and a neutron star (NS) companion; the supernova (SN) explosion of the COcore triggers a hypercritical accretion process onto the companion NS. For short bursts a NS–NS merger is traditionally adopted as the progenitor. We also indicate additional sub-classes originating from different progenitors: (COcore)–black hole (BH), BH–NS, and white dwarf–NS binaries. We also show how the outcomes of the further evolution of some of these sub-classes may become the progenitor systems of other sub-classes

    Open Universe for Blazars: A new generation of astronomical products based on 14 years of Swift -XRT data

    Get PDF
    Aims. Open Universe for Blazars is a set of high-transparency multi-frequency data products for blazar science, and the tools designed to generate them. Blazars are drawing growing interest following the consolidation of their position as the most abundant type of source in the extragalactic very high-energy γ-ray sky, and because of their status as prime candidate sources in the nascent field of multi-messenger astrophysics. As such, blazar astrophysics is becoming increasingly data driven, depending on the integration and combined analysis of large quantities of data from the entire span of observational astrophysics techniques. The project was therefore chosen as one of the pilot activities within the United Nations Open Universe Initiative, whose objective is to stimulate a large increase in the accessibility and ease of utilisation of space science data for the worldwide benefit of scientific research, education, capacity building, and citizen science. Methods. Our aim is to deliver innovative data science tools for multi-messenger astrophysics. In this work we report on a data analysis pipeline called Swift-DeepSky based on the Swift XRTDAS software and the XIMAGE package, encapsulated into a Docker container. Swift-DeepSky downloads and reads low-level data, generates higher level products, detects X-ray sources, and estimates several intensity and spectral parameters for each detection, thus facilitating the generation of complete and up-to-date science-ready catalogues from an entire space-mission data set. Results. As a first application of our innovative approach, we present the results of a detailed X-ray image analysis based on Swift-DeepSky that was run on all Swift-XRT observations including a known blazar, carried out during the first 14 years of operations of the Neil Gehrels Swift Observatory. Short exposures executed within one week of each other have been added to increase sensitivity, which ranges between ∼1 × 10-12 and ∼1 × 10-14 erg cm-2 s-1 (0.3-10.0 keV). After cleaning for problematic fields, the resulting database includes over 27 000 images integrated in different X-ray bands, and a catalogue, called 1OUSXB, that provides intensity and spectral information for 33 396 X-ray sources, 8896 of which are single or multiple detections of 2308 distinct blazars. All the results can be accessed online in a variety of ways, from the Open Universe portal through Virtual Observatory services, via the VOU-Blazar tool and the SSDC SED builder. One of the most innovative aspects of this work is that the results can be easily reproduced and extended by anyone using the Docker version of the Swift-DeepSky pipeline, which runs on Linux, Mac, and Windows machines, and does not require any specific experience in X-ray data analysis.Fil: Giommi, Paolo. Università di Roma; Italia. International Center For Relativistic Astrophysics; Italia. Universitat Technical Zu Munich; AlemaniaFil: Brandt, C. H.. International Center For Relativistic Astrophysics; Italia. Jacobs University; AlemaniaFil: Barres de Almeida, U.. International Center For Relativistic Astrophysics; Italia. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Pollock, A. M. T.. University of Sheffield; Reino UnidoFil: Arneodo, F.. New York University Abu Dhabi; Arabia SauditaFil: Chang, Y. L.. International Center For Relativistic Astrophysics; ItaliaFil: Civitarese, Enrique Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: de Angelis, Maria Cruz. Università di Roma; ItaliaFil: D'Elia, V.. Space Science Data Center; Italia. Osservatorio Astronomico di Roma; ItaliaFil: Del Rio Vera, J.. United Nations Office for Outer Space Affairs; AustraliaFil: Di Pippo, S.. United Nations Office for Outer Space Affairs; AustraliaFil: Middei, Riccardo. Università di Roma; ItaliaFil: Penacchioni, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Perri, M.. Osservatorio Astronomico di Roma; Italia. Space Science Data Center; ItaliaFil: Ruffini, Remo. International Center For Relativistic Astrophysics; ItaliaFil: Sahakyan, Narek. International Centre For Relativistic Astrophysics Network; ArmeniaFil: Turriziani, Sara. Computational Astrophysics Laboratory; Japó

    Calet upper limits on X-RAY and GAMMA-RAY counterparts of GW151226

    Get PDF
    We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs

    Energy calibration of CALET onboard the International Space Station

    Get PDF
    In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement

    What can we learn from GRBs?

    No full text
    We review our recent results on the classification of long and short gamma-ray bursts (GRBs) in different subclasses. We provide observational evidences for the binary nature of GRB progenitors. For long bursts the induced gravitational collapse (IGC) paradigm proposes as progenitor a tight binary system composed of a carbon-oxygen core (COcore) and a neutron star (NS) companion; the supernova (SN) explosion of the COcore triggers a hypercritical accretion process onto the companion NS. For short bursts a NS–NS merger is traditionally adopted as the progenitor. We also indicate additional sub-classes originating from different progenitors: (COcore)–black hole (BH), BH–NS, and white dwarf–NS binaries. We also show how the outcomes of the further evolution of some of these sub-classes may become the progenitor systems of other sub-classes
    corecore