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a b s t r a c t 

In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of 

high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began 

to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 

20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating 

an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and 

IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic 

range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy 

matching the resolution of energy measurements. These calibrations consist of calculating the conversion 

factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a 

seamless transition between neighboring gain ranges. This paper describes these calibration methods in 

detail, along with the resulting data and associated accuracies. The results presented in this paper show 

that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable 

resolution over the entire dynamic range of the electron spectrum measurement. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The CALET detector onboard the ISS as part of the Japanese Experiment 

Module - Exposed Facility [1] . 
1. Introduction 

The CALET (CALorimetric Electron Telescope) [1] was docked

to Exposed Facility of the Japanese Experiment Module (JEM-EF)

on the International Space Station (ISS) in August 2015 and has

been collecting data [2] since October 2015. It has been designed

for long duration observations of high energy cosmic rays onboard

the ISS. The CALET detector, shown in Fig. 1 , includes a very thick

calorimeter unit of 30 radiation-length ( X 0 ), consisting of imag-

ing and total absorption calorimeters (IMC and TASC, respectively).

The primary purpose of CALET is to make full use of a total-

containment and well-segmented calorimeter to discover nearby

cosmic-ray accelerators [3,4] and to search for dark matter [5] with

precision measurements of electron and gamma ray spectra over a

wide energy range. 

The calorimeter absorbs the majority of an electron shower’s

energy in the TeV energy range and is able to identify electrons

within a very high proton flux, with a rejection factor of > 10 5 ,

based on the difference in shower development. This instrument

will therefore be used to acquire the cosmic ray electron spectrum

over the energy range of 1 GeV to 20 TeV with exceptional en-

ergy resolution, especially above 100 GeV, where the resolution is

better than 2%. Since each channel of the lead tungstate (PbWO 4 )

crystals of the TASC has a dynamic range of six order of magni-

tudes, CALET is capable of determining the energy of primary par-

ticles from 1 GeV to 1 PeV. This enables the instrument to mea-

sure proton and nuclei spectra as well as electron and gamma ray

spectra over this extremely wide energy range. 

The cosmic-ray detectors based on magnetic spectrometers that

are presently in use (PAMELA [6] and AMS-02 [7] ) have the signif-

icant advantage of being able to distinguish the sign of the charge

on the particle. However, the spectral observations of these de-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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ices are limited to energy values below ∼ 1 TeV because their

etector systems are optimized for the observation of various cos-

ic rays that have energies below this value. In addition, previous

alorimeter-type instruments (ATIC [8] and Fermi-LAT [9] ) were

ot optimized for the observation of electrons, and so at present

heir ability to identify electrons in the presence of a very high

roton flux at higher energies is limited. In contrast, CALET is fully

apable of measuring the electron plus positron spectrum well into

he TeV region, as the result of being equipped with a thick 30 X 0 

alorimeter. Due to its extremely high energy resolution and its

bility to discriminate electrons from hadrons, CALET will allow

he detailed search for various spectral structures of high-energy

lectron cosmic rays, perhaps providing the first experimental evi-

ence of the presence of a nearby astrophysical cosmic-ray source.

ven though it cannot distinguish the charge sign, CALET has the

otential to detect distinctive features in the TeV region of elec-

ron plus positron energy spectrum possibly resulting from dark

atter annihilation/decay. In the opposite scenario, the informa-

ion acquired by CALET should make it possible to set significantly

ore stringent limits on dark matter annihilation compared to cur-

ent experimental data [5] . 

There is an intrinsic advantage in measuring the electromag-

etic components of cosmic rays with CALET. Since the TASC ab-

orbs the majority of the energy ( ∼ 95%) contained in an electro-

agnetic cascade, well into the TeV region, CALET is able to mea-

ure the primary energies of cosmic ray electrons and gamma rays

ith very small corrections. In principle, this should result in pre-

ise energy measurements with very low systematic errors. How-

ver, in order to achieve a calibration accuracy that matches the

ntrinsic energy resolution over the wide dynamic range of six or-

ers of magnitude, a careful calibration of each TASC readout chan-

el is required. The present paper details the calibration methods

nd results and also summarizes the accuracy of resulting energy

easurements. 

This paper is organized as follows. In Section 2 , the CALET

nstrumentation is briefly summarized, while the energy mea-

urements and calibration methods are described in Section 3 .

ection 4 presents each step of the CALET energy calibration pro-

ess in detail, along with the resulting data. In Section 5 , the cali-

ration accuracy is studied and its effects on the energy resolution

nd absolute scale are assessed. Last, a summary and conclusions

re presented in Section 6 . 

. CALET Instrumentation 

The CALET calorimeter, shown in side view in the lower part of

ig. 1 along with a simulation of a 1 TeV electron shower, has sev-

ral unique and important characteristics, as briefly noted in the

ntroduction. These include its ability to resolve in detail the ini-

ial development of showers, as well as tracks generated by non-

nteracting minimum ionizing particles (MIPs), and its capacity to

recisely measure the energy of electrons in the TeV region as a

esult of its depth of 30 X 0 . These features are achieved through a

ombination of three primary detector sub-systems: Particle iden-

ification and energy measurements are performed by the TASC,

harge identification is obtained from a charge detector (CHD), and

n imaging calorimeter (IMC) is employed for track reconstruction.

he key performance of each detector component, as described be-

ow, was estimated on the basis of a detailed Monte Carlo (MC)

imulation and was confirmed by several beam tests carried out

rimarily at the CERN-SPS facility. 

Plastic scintillators arranged in two orthogonal layers, each con-

aining 14 scintillator paddles (3.2 × 1.0 × 44.8 cm 

3 ), constitute

he CHD. These paddles generate photons that are detected by a

hotomultiplier tube (PMT), and the resulting output is sent to a

ront end circuit (FEC). This FEC and the subsequent readout sys-
em have sufficient dynamic range for particle charges in the range

f Z = 1 ∼ 40 . The charge resolution of the CHD spans the range

rom 0.15 electron charge units ( e ) for boron to � 0 . 30 − 0 . 35 e in

he iron region [10] . 

The initial shower is visualized by the IMC sampling calorime-

er, which has been carefully designed to accurately determine the

hower starting point and incident direction. This calorimeter has a

hickness of 3 X 0 and contains five upper 0.2 X 0 and two lower 1.0

 0 tungsten plates. The IMC contains a total of 16 detection layers,

rranged in 8 X-Y pairs, with each layer segmented into 448 paral-

el scintillating fibers (0.1 × 0.1 × 44.8 cm 

3 ), which are read out

y 64-channel multi anode PMTs. By reconstructing the trajectory

f incident particles in the IMC, the arrival direction of each indi-

idual particle can be determined. Above several tens of GeV, the

xpected angular resolution for gamma-rays is ∼ 0.24 °, while the

ngular resolution for electrons is better and close to ∼ 0.16 ° [1] . 

The TASC has an overall depth of 27 X 0 and consists of 12 de-

ection layers in an alternating orthogonal arrangement, each com-

rised of 16 lead tungstate crystal (PbWO 4 or PWO) logs with di-

ensions of 2.0 × 1.9 × 32.6 cm 

3 . As a result of this design, the

ASC is able to image the development of the shower in three di-

ensions. With the exception of the first layer which uses PMTs,

 photodiode (PD) in conjunction with an avalanche photodiode

APD) reads the photons generated by each PWO log. Employ-

ng dual shaping amplifiers with two different gains for each APD

PMT) and PD, increases the dynamical range to 10 6 (10 4 ). As a

onsequence, the TASC can measure the energy of the incident

lectrons and gamma rays with a resolution < 2% above 100 GeV

11] . Another important role of the TASC is to efficiently iden-

ify high-energy electrons among the overwhelming background of

osmic-ray protons. Particle identification information from both

he IMC and TASC is used to achieve an electron detection effi-

iency above 80% and a proton rejection power of ∼ 10 5 [12] . 

A preselected combination of simultaneous trigger counter sig-

als, which are produced by discriminating the analog signals from

he detector components, generates an event-trigger decision. As

uch, each of CHD X and Y, IMC X1–X4, Y1–Y4 and TASC X1 gener-

tes lower discriminator signals [2] . The signals from two IMC fiber

ayers are processed by a single front end circuit, and so each axis

as only four trigger counter signals. Three trigger modes are pos-

ible in CALET. The High Energy (Low Energy) Trigger select shower

vents with energies greater than 10 GeV (1 GeV), while the Single

rigger is dedicated to acquiring data from non-interacting parti-

les for the purposes of detector calibration. 

. Energy measurement and calibration method 

As briefly introduced in Section 1 , careful calibration of each

ASC readout channel is required in order to achieve a calibra-

ion accuracy that matches the intrinsic energy resolution over the

ide dynamic range of six orders of magnitude. The entire dy-

amic range is covered by four different gain ranges, based on two

hoton detectors - an APD and a PD - in conjunction with a shaper

mplifier with lower and higher gains. The energy calibration pro-

ess consists of three steps as follows: 

1. determination of the conversion factor between ADC units and

the energy deposit, 

2. linearity measurements over each gain range, 

3. correlation measurements between adjacent gain ranges. 

The first step is the calibration of the energy deposit of each

hannel to obtain an ADC unit-to-energy conversion factor using

IPs, known as MIP calibration. As it is the case with other detec-

ors intended for direct cosmic-ray measurements, CALET can use

enetrating particles to equalize the gains of different detector seg-

ents, based on the fact that the energy deposits of such particles
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Fig. 2. Temperature distributions in the TASC X1 ( Top Left ) and Y6 ( Bottom Left ) 

units, averaged over four months. Right side panels show the positional tempera- 
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in the Top Right ( Bottom Right ) panels represent X1-CH01 and X1-CH16 (Y6-CH01 

and Y6-CH16) data, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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in the relativistic energy range are approximately constant. In con-

trast with the calibration of a spectrometer, MIP calibration serves

as an absolute energy calibration of the CALET because this instru-

ment is a total absorption calorimeter. Therefore, absolute end-to-

end energy calibrations are possible using the MIP technique. End-

to-end calibration stands for the summary treatment of all detec-

tor responses transforming the particle’s energy loss to the output

signal, such as PWO scintillation yield, photon propagation in the

PWO, quantum efficiency of the APD/PD, gain of the front end cir-

cuit and others. 

Prior to launch, the linearity over each gain range was con-

firmed by on-ground calibration using a UV pulse laser, during

which the APD and PD outputs were determined as a function of

the laser energy. In this process, the UV laser pulse was absorbed

by the PWO, while the APD and PD detected the resulting scintil-

lation emissions resulting from de-excitation of the PWO. By scan-

ning the UV laser pulses over the entire energy range, it was there-

fore possible to calibrate the input-to-output correspondence for

all four gain ranges. 

The adjacent gain ranges were subsequently cross-calibrated

based on their gain ratios. Taking advantage of the nearly one or-

der of magnitude overlap between adjacent gain ranges, it was

possible to measure identical energy deposits within two gain

ranges. In contrast to the MIP calibration process, which requires

a dedicated trigger mode, for gain correlation measurements all

the data regardless of trigger modes can be used. This is help-

ful especially for PD range correlation measurements because such

measurements require a long term accumulation of data for very

high energy events. As the linearity of each gain range had already

been confirmed, the gain over entire dynamic range could be de-

termined based on the ADC-to-energy conversion factor, using the

acquired gain ratios between adjacent gain ranges. This process au-

tomatically takes into account possible gain changes due to the

flight environment. Such gain changes are expected to occur due

to variations in temperature between flight and ground calibration.

Special care was also required to account separately for the effects

of the flight environment on the APD gain and the light yield of

the PWO, which in turn affects both the APD and PD gain ranges. 

4. Energy calibration 

4.1. MIP Calibration 

It is an important advantage of the CALET instrument that an

absolute end-to-end calibration of the energy scale is possible, by

employing the MIP technique. While 10% accuracy is relatively easy

to achieve using MIPs, more accurate calibration requires careful

analysis of the energy distribution of incident particles, appropri-

ate penetrating particle event selection, and consideration of the

position and temperature dependence of each TASC log. The latter

is especially important because CALET employs a one-end readout

system and because of the relatively high temperature dependence

of both the PWO and APD. This aspect of the calibration process is

discussed in detail in the following section. 

While the energy deposits of relativistic particles are approxi-

mately constant and close to minimum ionization, the sample used

for MIP calibration also includes particles outside the minimum

ionizing region. Their energy spectrum depends on the cutoff rigid-

ity, and hence the geomagnetic latitude. As a result, the position

of the MIP peaks will shift by several percent as a function of the

geomagnetic latitude [11] . To account for this effect, the incident

particle energy distributions are assessed by simulating the energy

spectra of incoming primary particles [11] using ATMNC3 [13] , in

which AMS-01 proton and helium spectra [14] were used as in-

put, since these data were taken at various geomagnetic latitudes,

as well as them being in good agreement with BESS [15] and re-
ent experiments. As well, contamination by interacting particles

nd/or scattered and stopped particles can cause a systematic shift

n the determined position of MIP peaks. In order to avoid this,

he appropriate selection of penetrating particle events is ensured

sing a likelihood analysis [11] . To further improve the selection

fficiency and to reduce systematic bias during event selection, the

ikelihood ratios of penetrating particles to interacting particles are

lso employed. By taking the ratios, the separation of penetrat-

ng particles from interacting particles becomes better, while possi-

ly remaining discrepancies between flight and MC data have less

nfluence. 

Event selection based on likelihood uses energy deposit distri-

utions obtained from an MC simulation including the detector re-

ponse of each channel. Simulating this detector response requires

ata regarding the noise levels in units of energy, which in turn re-

uires the ADC unit-to-energy conversion factor. Because this con-

ersion factor is obtained from the calibration, the MIP calibration

s performed as an iterative procedure. However, this process con-

erges very quickly and a single iteration is sufficient to obtain sta-

le results when calibrating CALET. 

.1.1. Position and temperature dependence corrections 

To fully calibrate each TASC log, it is first necessary to correct

or the position dependent effects so as to equalize the response

long its length. In addition, because both the PWO light yield and

he APD gain will vary with temperature, it is also required to cor-

ect for this temperature dependence. During the calibration pro-

ess, the temperatures inside the TASC were calculated from tem-

erature data measured during flight using a software that param-

terized the temperature distribution in the TASC based on the

ALET thermal model. The CALET flight model is equipped with

4 thermocouples located around the TASC structure. The CALET

hermal model was calibrated using the flight instrumentation re-

ults obtained from a thermal vacuum test performed at the JAXA

sukuba Space Center. Fig. 2 presents the average temperature dis-

ributions inside the X1 ( Top ) and Y6 ( Bottom ) layers of the TASC.
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Fig. 3. An example of the position dependence of the MIP peak for a typical TASC 

log. The filled black and red circles represent data before and after the correc- 

tion, respectively. The black line indicates the function used to fit the position de- 

pendence. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

H  

d  

p  

p  

e  

p  

c  

l

 

t  

e  

p  

t  

r  

e  

s  

t  

o  

f  

d

 

t  

d  

s  

t  

i  

a  

c  

T  

f  

w  

a  

w  

o  

o  

t  

T  

a  

p  

a  

t

Fig. 4. The relationship between the beta angle, temperature and MIP peaks. The 

upper graph plots the time variation of the beta angle. The second graph shows the 

variations over time of the temperatures of four segments located in the corners of 

TASC X1. The third and fourth graphs represent the MIP variations of two different 

channels at both ends of TASC X1, before and after the temperature dependence 

correction. The last three graphs represent the same type of data for TASC Y6. 

p  

r  

u  

e  

m  

a  

a  

1  

d

4

 

p  

M  

d  

t  

i  

s  

v  

d  

h  

l  
ere, the left side panels show the two-dimensional temperature

istributions, while the right side panels show the positional tem-

erature dependence along the length of each unit. Since it is not

ossible to differentiate between the gain change due to the gen-

ral temperature slope and the inherent position dependence, the

osition dependence correction includes both effects. These data

learly show that the temperature tends to decrease along the

ength of each unit. 

To correct for this position dependence, MIP peaks were de-

ermined for each of 16 segments defined along the length of

ach TASC log. Subsequently, the position dependence of these MIP

eaks for each log was fitted using an appropriate function of dis-

ance from the sensor (the PMT or APD/PD). To ensure that the cor-

ect positional dependence was derived in each case, several differ-

nt functions were defined. Fig. 3 presents an example of the po-

ition dependence of a MIP peak both before and after the correc-

ion process. On average, a position dependence of 9.2% RMS was

bserved for a total of 192 PWO logs, and these data were success-

ully corrected. Following this correction, the RMS of the position

ependence was reduced to 1.8%. 

In addition to the general temperature slopes in the TASC logs,

here was also an overall temperature variation due to the depen-

ence of temperature related to both the solar beta angle 1 and the

olar altitude. To discriminate between these temperature varia-

ions and the position dependence due to temperature gradients

n the TASC log data, we have obtained the averaged temperature

t the center of each log and averaged temperature gradient to cal-

ulate a position dependent reference temperature for each track.

he correction for temperature dependence then employed the dif-

erence from the reference temperature. In this manner, the data

ere corrected for both the beta angle dependence and the over-

ll temperature changes due to solar altitude without interfering

ith the position dependence correction. Fig. 4 presents examples

f the overall temperature dependence of MIP peaks over a period

f seven months, together with solar beta angle variations over

ime (in the upper graph) and temperature variations for both the

ASC X1 and Y6 layers. These data indicate that the MIP peak vari-

tion rate due to the temperature changes was, on average, −1.9%

er degree for the PMT channels, and −3.4% for the channels with

n APD. Since these observed temperature dependences of the MIP
1 solar beta angle is defined as the angle between the orbital plane of the ISS and 

he vector to the sun 

d  

s  

i  

f  
eaks were consistent with one another within the associated er-

ors, the average values for the PMT and APD were adopted as

niversal gain corrections independent of the PWO logs and refer-

nce temperatures. Thanks to the performance of the active ther-

al control system (ATCS) available in the JEM-EF, temporal vari-

tions in the temperature were typically within a few degrees. On

verage, a temperature dependence of 3.3% RMS was observed for

92 PWO logs, and this variation was successfully corrected for, re-

ucing the RMS variation to 1.0%. 

.1.2. Determination of the energy conversion factor 

Following the corrections for the position and temperature de-

endence described in Section 4.1.1 , accurate calculations of the

IP peaks in ADC units (ADU) could be obtained from the flight

ata, while MIP peaks in energy units could be determined from

he simulated MC data. Subsequently, with the MIP peak values

n both ADU and GeV, it was possible to find the energy conver-

ion factor, GeV/ADU. In order to verify the accuracy of this con-

ersion factor, factors were calculated for both proton and helium

ata. As shown in Fig. 5 , clear peaks resulting from penetrating

elium ( Top ) and protons ( Bottom ) were extracted using event se-

ection based on likelihood analysis for both flight and MC event

ata. The MC event data were generated from a CALET detector

imulation [12] with the detector simulation tool EPICS [16] us-

ng the ATMNC3 results as input data. The energy deposit of EPICS

or PWO was confirmed to be consistent within 1% with the beam
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Fig. 5. Comparisons of distributions of flight and simulated helium and proton data. Blue open and green hatched histograms represent flight and MC data, respectively. The 

top three plots provide helium distributions, while the bottom three show proton distributions. Data from one PMT channel ( Left ), one typical APD/PD channel ( Middle ) and 

one APD/PD channel in the bottom layer ( Right ) are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 6. Comparison of conversion factors obtained from proton and helium MIPs. 

The histogram represents the distribution of the proton MIP conversion factors di- 

vided by those obtained from helium MIPs for each TASC log. 
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test data and with the Geant4 results [17] . In Fig. 5 , data from one

PMT channel ( Left ), one typical APD/PD channel ( Middle ) and one

APD/PD channel in the bottom layer ( Right ) are shown. The con-

version factor was calculated by comparing MIP distributions be-

tween flight and MC data; each distribution was fitted with an

appropriate function and the ratio of the peaks gave the conver-

sion factor. It is very important to properly smear the MC distri-

bution according to the relevant noise factors. To do so, the Gaus-

sian sigma of the fitted pedestal distribution of each TASC channel

was used to incorporate electronic noise into the simulation. Fluc-

tuations due to photoelectron statistics were included especially in

the case of the TASC X1 channels equipped with PMTs, in addition

to the pedestal noise, because such fluctuations have a significant

effect due to the lower level of pedestal noise in these channels

compared to APD channels. The accuracy of each conversion factor

was estimated from the errors in the peak fits on a channel-by-

channel basis. On average, the accuracy values were 1.6% and 0.6%

for protons and helium, respectively. To ensure robustness of fit re-

sults, the fit range dependence of peak value was also investigated

by changing the fit range by ± 33% from its optimal value and it

was found that such dependencies were reasonably small as 0.4%

and 0.6% for protons and helium, respectively. They are included

in both calibration error and systematic uncertainty on the energy

scale. Since the helium data have better statistics and a superior

signal-to-noise ratio, it is evident that the more accurate determi-

nation of conversion factors was achieved using the helium data. 

Although this paper is focused on the calibration of the TASC,

the same method is applicable to the CHD and IMC, and in fact

was employed when equalizing and calibrating the energy deposit

of each of their channels. 

4.1.3. Estimation of calibration accuracy 

While it is relatively easy to estimate the accuracy of the calcu-

lated position and temperature dependences because it is possible

to check the equalizations after applying the corrections, it is gen-

erally more difficult to evaluate the accuracy of the absolute cali-

bration. One key test to confirm the validity of the absolute cali-

bration of the energy conversion factor is to assess the consistency

between proton and helium data. This is because the A/Z differ-
nce between protons and helium results in different primary en-

rgy distributions at equivalent rigidity cutoffs and also because

he different signal-to-noise ratio will affect the event selection of

enetrating particles should there be any such dependences. As

hown in Fig. 6 , excellent agreement was obtained between con-

ersion factors obtained from proton and helium MIP data. This

gure plots the conversion factors obtained in the case of proton

IPs divided by those generated from helium MIP data for all TASC

ogs. From the resulting distribution, it is concluded that, on aver-

ge, the conversion factors agree within 0.1%, and the observed de-

iations from unity are slightly larger than the combined errors in

he conversion factors including the uncertainty from the energy

istribution of the used events, which is studied in the following.

o account for this small inconsistency, an additional calibration

rror of 1.0% is allocated as a systematic uncertainty. To directly

valuate the effects of the energy distribution of incoming parti-

les, the MIP peak variations due to the rigidity cutoff were com-
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Fig. 7. Schematic view of UV pulse laser light injection into the PWO, together with 

TASC APD/PD readouts. 
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ared between the helium flight and MC data. Both data displayed

imilar trends, although there were small discrepancies at the low

utoff region, where low energy particles play an important role.

his could result from inaccuracy of the solar modulation parame-

er or insufficient MC statistics. Herein, a conservative estimate of

 potential discrepancy of 1.0% is introduced for the systematic un-

ertainty in the energy scale and in the calibration accuracy. 

.2. Linearity measurements over the entire dynamic range 

It was necessary to determine the input-output relationship

ver each gain range with ground-based measurements prior to

aunch because such measurements are no longer possible in or-

it. However, the relative gain change between the four ranges

an be monitored and corrected using gain ratio measurements,

s explained in the following section. UV pulse laser calibrations

ere performed on ground for linearity confirmation. While scan-

ing the pulse laser intensity through six orders of magnitude, de-

ailed measurements were made of the four APD/PD output re-

ponses from each of the 176 PWO logs. Fig. 7 provides a schematic

iagram of the UV pulse laser injection into the PWO, from the

pposite end to the APD/PD. Since the UV photons are absorbed

ithin a very short distance, all the photons seen by the APD/PD

re the result of PWO scintillation, which has a very similar spec-

rum as that generated by charged particles. Fig. 7 also shows the

ybrid APD/PD package and subsequent readout system. By com-

ining four readouts, the full dynamic range of six orders of mag-

itude is covered while maintaining a nearly one order of mag-

itude overlap between adjacent gain ranges. It should be noted

hat there is crosstalk from the APD to the PD due to stray ca-
A
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ig. 8. Typical data acquired from UV pulse laser calibration. ( Left ) From left to right, th

ain (blue) and PD low gain (magenta) are plotted as a function of laser energy with the

ange represent data acquired without an APD bias. ( Right ) Close up view of the PD hig

inear relationship. (For interpretation of the references to colour in this figure legend, th
acitance between these two devices. When the charge sensitive

mplifier (CSA) of the APD is saturated, the feedback from the CSA

ecomes insufficient and the potential at the APD-CSA input has

 non-zero value, which induce a signal in the PD. Although the

rosstalk amounts to only ∼ 0.1% of the charge ratio, it can be-

ome significant due to the APD-PD gain/area ratio of 10 0 0 to 1

APDs have a 20 times larger area and a 50 times higher gain).

ince the crosstalk signal is proportional to the input charge and

s stable, it is possible to calibrate the input-output relationship

sing UV pulse laser data. Fig. 8 shows an example of the data ob-

ained from UV pulse laser measurements. Here, the horizontal and

ertical axes represent the laser energy and ADC values, respec-

ively. Since the laser energy is monitored on a pulse-by-pulse ba-

is, the linearity over the entire dynamic range was confirmed us-

ng 17,0 0 0 points of laser pulse data for each channel. As a result of

he APD/PD crosstalk, the PD response exhibits a slope break cor-

esponding to the APD-CSA saturation point, as shown in the right

anel of Fig. 8 . The responses of all APD/PD channels were mea-

ured and the data confirmed the linear and broken linear relation-

hips of the APD and PD response functions, respectively, as a re-

ult of fitting of the data points with appropriate functions for each

ange. To estimate the errors resulting from fitting the linear and

roken linear functions, the distributions of residuals from the fit-

ing functions were assessed for each gain range. From the RMS of

ach distribution, the errors were estimated to be 1.4%, 1.5%, 2.5%

nd 2.2% for the APD high gain, APD low gain, PD high gain and PD

ow gain, respectively. Although these errors include both possible

onlinearities and expected statistical variations in measurements,

n addition to UV laser system calibration errors, we adopted

hese values as the actual errors due to possible non-linear

ffects. 

It is expected that both the APD gain and the PWO light yield

ill vary between on-ground conditions and those onboard the

SS, as well as with time during on-orbit observations. This cor-

esponds to a change in the amount of crosstalk charge per unit

nergy deposit and thus results in a slope change in the APD/PD

rosstalk region. We confirmed this effect using UV laser data ac-

uired at a higher APD bias ( ∼ ×2 gain). During this laser cali-

ration process, three data sets with different APD gains (nominal

ain, ∼ ×2 gain and small gain without APD bias) were obtained

o validate our simple model for correcting APD/PD crosstalk and
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Fig. 9. Typical gain correlation from flight data between adjacent gain ranges. (Left) APD high gain to APD low gain, (Middle) APD low gain to PD high gain, and (Right) PD 

high gain to PD low gain regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. A typical energy deposit spectrum after applying full calibration. Open red, 

hatched green, dotted blue and filled magenta histograms correspond to APD high, 

APD low, PD high and PD low gain ranges, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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to estimate the correction errors, as well as to calibrate all the gain

ranges. This effect is revisited in the next section in relation to gain

correlation measurements. 

4.3. Cross calibration of adjacent gain ranges 

The gain correlations between adjacent gain ranges were used

to correct for possible gain changes between the UV laser calibra-

tions performed on the ground and observations onboard the ISS.

Fig. 9 presents examples of gain ratio measurements in the APD

high gain to APD low gain (Left) , APD low gain to PD high gain

(Middle) , and PD high gain to PD low gain (Right) regions. Taking

advantage of the nearly one order of magnitude overlap between

adjacent gain ranges, the same energy deposit was measured with

two gain ranges and the gain ratio required to connect the two

gain ranges was determined by fitting the profile with a simple

linear function. In the fitting of each channel, proper selection of

the fitting range was vital in order to avoid saturation effects in

the higher gain range and the lower signal-to-noise region due to

pedestal noise in the lower gain range. While the offset was set

to zero in most cases, non-zero offsets during linear fitting were

allowed in some caces involving PD-high to APD-low gain ratio

fitting due to APD-to-PD crosstalk prior to APD-CSA saturation. In

such cases, correct treatment was ensured by using the same offset

during linear fitting of the UV pulse laser data. The errors on the

gain ratios were determined from the parameter errors in the lin-

ear fittings since the reduced chi-squared distributions were found

to be reasonable, having average values of approximately 1. The er-

rors on the ratios were found to be 0.1%, 0.7% and 0.1% for the APD

high gain to APD low gain, PD high gain to APD low gain and PD

high gain to PD low gain regions, respectively. 

As explained in the previous section, slope changes in the on-

orbit calibration of the APD range with respect to the ground data

were foreseen due to the different environment experienced in or-

bit. This also affects the APD-to-PD crosstalk region, which was

corrected based on the assumption that the slope change in the PD

range after APD-CSA saturation is proportional to the slope change

in the APD range between ground and orbit. When applying such

corrections, it is important to identify the crosstalk component be-

cause the slope associated with the PD gain is not affected by the

APD gain change. UV laser data acquired with a ∼ ×2 gain were

used to validate the correction method and to estimate the associ-

ated errors. By applying the same procedure to ∼ ×2 gain data and

comparing the predicted slope with the measured slope in the PD

high gain range above APD-CSA saturation point, we were able to

estimate the errors associated with our simple model for the cor-

rection of the APD-PD crosstalk effect. When applying this method

to on-orbit data, the error was scaled to the actual in-flight gain

difference of ∼ 10%, and the resultant error on the gain was esti-

mated to be 1.1%. Since it is not possible to determine this error
rom the on-orbit data, we consider this error to represent a sys-

ematic uncertainty on the energy scale as well as an estimation of

he calibration error that affects the energy resolution. 

Since the UV laser tests confirmed the linearity of each gain

ange, calibration over the entire dynamic range is now possible by

pplying the conversion factor to the subsequent gain range using

he gain ratios. Fig. 10 shows a typical calibrated energy deposit

pectrum for one TASC channel. A smooth transition between ad-

acent gain ranges is clearly observed. To determine the errors due

o extrapolation from the region in which the gain ratio was mea-

ured to the uppermost point in each gain range, the slopes were

ompared between the gain ratio region and the full range for each

ain range by employing UV laser data. Using the RMS of the dis-

ribution of the relative slope changes obtained from all the TASC

hannels, the errors were estimated as 1.6% and 1.8% for the APD

igh gain to APD low gain and PD high gain to PD low gain re-

ions, respectively. Note that the RMS is dominated by the UV laser

est statistics which is limited especially in the overlapping region

ue to shorter lever arm. Since there is no systematic shift in their

lopes, these extrapolation errors can be considered as a part of

he calibration accuracy, rather than a component of the energy

cale uncertainty. The APD low gain to PD high gain extrapolation

rror was estimated at a higher value 2.0%, to account for possible

ain changes relative to the on-ground calibration. This conserva-

ive error estimate should be considered as a component of the

nergy scale uncertainty. 
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Table 1 

Summary of the error budget in the energy calibration. 

MIP Energy conversion 2.6% 

Peak fitting of MC and flight data 0.6% 

Fitting range dependence 0.6% a 

Position dependence 1.8% 

Temperature dependence 1.0% 

Rigidity cutoff dependence 1.0% a 

Systematic uncertainty estimated 

from p/He consistency 1.0% 

UV Laser Linearity 1.4 ∼ 2.5% 

Fit error 

APD high gain 1.4% 

APD low gain 1.5% 

PD high gain 2.5% 

PD low gain 2.2% 

Gain Ratio Gain range connection 1.6 ∼ 2.1% 

Fit error 

APD-high to APD-low gain 0.1% 

APD-low to PD-high gain 0.7% 

PD high to PD low gain 0.1% 

Slope extrapolation 

APD-high to APD-low gain 1.6% 

APD-low to PD-high gain 2.0% a 

PD high to PD low gain 1.8% 

Sampling Bias 0.5% b 

a also considered as systematic error on energy scale 
b energy-scale systematic error only 
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Fig. 11. (Top) Energy dependence of the relative error in the energy deposit sum 

measurements for electrons, considering all the energy calibration errors and de- 

tector responses (solid red lines). The systematic uncertainty on an absolute scale 

is also shown by black dashed lines. (Bottom) Estimated energy resolution for elec- 

trons as a function of energy. Open red squares denote intrinsic resolution and 

closed red squares denote actual resolution including all the detector responses and 

calibration errors in the case of energy determination using the TASC + IMC. Circu- 

lar symbols indicate energy determination using the TASC only. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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. Energy measurement: error and resolution 

Table 1 summarizes the error budget for CALET energy mea-

urements based on the discussions in the previous sections. Note

hat the systematic error in the energy measurements resulting

rom the MC simulation based on EPICS is negligible below the en-

rgy of 95% containment for electromagnetic showers ( ∼ 20 TeV).

ighly detailed detector geometries and materials were employed

n our MC simulation, based on the CAD model for the CALET de-

ector. 

Using the estimated calibration errors and measured detector

esponses, such as the pedestal noise on a channel-by-channel ba-

is, the errors in the energy deposit sum were calculated for simu-

ated electron events from 1 GeV to 20 TeV. The top panel of Fig. 11

resents the energy dependence of the relative error in the energy

eposit sum measurements. As clearly shown by this figure, a 2%

recision level energy calibration was achieved over the entire dy-

amic range above 10 GeV. The reduced accuracy with which the

nergy deposit can be determined below 10 GeV is due to pedestal

oise. As reported in detail in Ref. [11] , the requirements for the

alibration error of each TASC log can be relaxed by a factor of ∼ 3

ompared to that for the energy resolution, as long as these indi-

idual errors of in total ∼ 6% are randomly distributed. This is due

o the fact that, on average, ∼ 10 TASC logs contribute significantly

o an event’s energy measurement. The results obtained here are

herefore perfectly consistent with the expected values. 

The estimated systematic uncertainty is also plotted on an ab-

olute scale in Fig. 11 . The systematic uncertainty in the energy

cale was estimated to be less than ∼ 2%. Since the calibration er-

or is a fixed value for each channel, there could be systematic bias

n the energy measurements. To account for this effect, several

ets of simulation data were generated and evaluated for such a

ystematic bias by calculating the ratio from estimated energy de-

osit sum to true energy sum. The resultant error was estimated

n an energy dependent manner and found to be ≤ 0.5% as indi-

ated as ’Sampling Bias’ in Table 1 . It should be noted that the PD

ange becomes important, i.e., accounts for more than 20% of an

nergy measurement, at an energy deposit sum of 1 TeV, resulting
n slightly larger systematic uncertainties in this range, although

he calibration accuracy is still satisfactory. Furthermore, improve-

ent in our knowledge of the systematic uncertainty on the en-

rgy scale is expected as long as the collected data statistics grows,

hich will allow us to understand the detector better. 

To conclude, the estimated energy resolution for electrons as a

unction of energy is plotted in the bottom panel of Fig. 11 . Thanks

o the detailed calibration process described in this paper, a very

igh energy resolution has been achieved over the entire dynamic

ange. 

. Conclusion 

Energy calibration of the CALET, launched to the ISS in August

015 and accumulating scientific data since October 2015, was per-

ormed using both flight data and calibration data acquired on the

round before launch. By taking advantage of the fully-active to-

al absorption calorimeter, absolute calibration between ADC units

nd energy was possible with an accuracy of a few percent, using

enetrating particles. Successful calibration was achieved over the

omplete dynamic range of six orders of magnitude for each TASC

hannel with sufficient accuracy to maintain a fine resolution of 2%

bove 100 GeV by combining two calibration processes: linearity

easurements over each gain range and determination of the cor-

elation between adjacent gain ranges. The systematic error in the
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energy scale was also estimated based on the calibration results

and was found to be ≤ 2%. Based on long duration observations

of high energy cosmic rays onboard the ISS, the measurement of

the inclusive ( e + + e −) electron spectrum well into the TeV region

with unprecedented accuracy is expected, as well as measurements

of gamma-rays, protons and nuclei. 
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