11 research outputs found

    Dose ratio proton radiography using the proximal side of the Bragg peak

    Get PDF
    Purpose: In recent years there has been a movement towards single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method, in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp fall-off. We investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak we generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, we were able to generate look-up graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these look-up graphs we investigated the applicability of the technique for a range of patient treatment sites. We validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm2, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ =1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, we have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains

    Improving interinstitutional and intertechnology consistency of pulmonary SBRT by dose prescription to the mean internal target volume dose.

    Get PDF
    Dose, fractionation, normalization and the dose profile inside the target volume vary substantially in pulmonary stereotactic body radiotherapy (SBRT) between different institutions and SBRT technologies. Published planning studies have shown large variations of the mean dose in planning target volume (PTV) and gross tumor volume (GTV) or internal target volume (ITV) when dose prescription is performed to the PTV covering isodose. This planning study investigated whether dose prescription to the mean dose of the ITV improves consistency in pulmonary SBRT dose distributions. This was a multi-institutional planning study by the German Society of Radiation Oncology (DEGRO) working group Radiosurgery and Stereotactic Radiotherapy. CT images and structures of ITV, PTV and all relevant organs at risk (OAR) for two patients with early stage non-small cell lung cancer (NSCLC) were distributed to all participating institutions. Each institute created a treatment plan with the technique commonly used in the institute for lung SBRT. The specified dose fractionation was 3 × 21.5 Gy normalized to the mean ITV dose. Additional dose objectives for target volumes and OAR were provided. In all, 52 plans from 25 institutions were included in this analysis: 8 robotic radiosurgery (RRS), 34 intensity-modulated (MOD), and 10 3D-conformal (3D) radiation therapy plans. The distribution of the mean dose in the PTV did not differ significantly between the two patients (median 56.9 Gy vs 56.6 Gy). There was only a small difference between the techniques, with RRS having the lowest mean PTV dose with a median of 55.9 Gy followed by MOD plans with 56.7 Gy and 3D plans with 57.4 Gy having the highest. For the different organs at risk no significant difference between the techniques could be found. This planning study pointed out that multiparameter dose prescription including normalization on the mean ITV dose in combination with detailed objectives for the PTV and ITV achieve consistent dose distributions for peripheral lung tumors in combination with an ITV concept between different delivery techniques and across institutions

    4D treatment planning for scanned ion beams

    Get PDF
    At Gesellschaft für Schwerionenforschung (GSI) more than 330 patients have been treated with scanned carbon ion beams in a pilot project. To date, only stationary tumors have been treated. In the presence of motion, scanned ion beam therapy is not yet possible because of interplay effects between scanned beam and target motion which can cause severe mis-dosage. We have started a project to treat tumors that are subject to respiratory motion. A prototype beam application system for target tracking with the scanned pencil beam has been developed and commissioned

    Characterizing the modulation transfer function (MTF) of proton/carbon radiography using Monte Carlo simulations

    No full text
    Purpose: To characterize the modulation transfer function (MTF) of proton/carbon radiography using Monte Carlo simulations. To assess the spatial resolution of proton/carbon radiographic imaging. Methods: A phantom was specifically modeled with inserts composed of two materials with three different densities of bone and lung. The basic geometry of the phantom consists of cube-shaped inserts placed in water. The thickness of the water, the thickness of the cubes, the depth of the cubes in the water, and the particle beam energy have all been varied and studied. There were two phantom thicknesses considered 20 and 28 cm. This represents an average patient thickness and a thicker sized patient. Radiographs were produced for proton beams at 230 and 330 MeV and for a carbon ion beam at 400 MeV per nucleon. The contrast-to-noise ratio (CNR) was evaluated at the interface of two materials on the radiographs, i.e., lung-water and bone-water. The variation in CNR at interface between lung-water and bone-water were study, where a sigmoidal fit was performed between the lower and the higher CNR values. The full width half-maximum (FWHM) value was then obtained from the sigmoidal fit. Ultimately, spatial resolution was defined by the 10% point of the modulation-transfer-function (MTF 10%), in units of line-pairs per mm (lp/mm). Results: For the 20 cm thick phantom, the FWHM values varied between 0.5 and 0.7 mm at the lung-water and bone-water interfaces, for the proton beam energies of 230 and 330 MeV and the 400 MeV/n carbon beam. For the 28 cm thick phantom, the FWHM values varied between 0.5 and 1.2 mm at the lung-water and bone-water interface for the same inserts and beam energies. For the 20 cm phantom the MTF 10% for lung-water interface is 2.3, 2.4, and 2.8 lp/mm, respectively, for 230, 330, and 400 MeV/n beams. For the same 20 cm thick phantom but for the bone-water interface the MTF 10% yielded 1.9, 2.3, and 2.7 lp/mm, respectively, for 230, 330, and 400 MeV/n beams. In the case of the thicker 28 cm phantom, the authors observed that at the lung-water interface the MTF 10% is 1.6, 1.9, and 2.6 lp/mm, respectively, for 230, 330, and 400 MeV/n beams. While for the bone-water interface the MTF 10% was 1.4, 1.9, and 2.9 lp/mm, respectively, for 230, 330, and 400 MeV/n beams. Conclusions: Carbon radiography (400 MeV/n) yielded best spatial resolution, with MTF 10% = 2.7 and 2.8 lp/mm, respectively, at the lung-water and bone-water interfaces. The spatial resolution of the 330 MeV proton beam was better than the 230 MeV proton, because higher incident proton energy suffer smaller deflections within the patient and thus yields better proton radiographic images. The authors also observed that submillimeter resolution can be obtained with both proton and carbon beams
    corecore